Skip to main content
Log in

Thermogravimetric–differential thermal analysis of the solid-state decomposition of ammonium tetrathiomolybdate during heating in argon

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation of MoS2 by thermal decomposition of ammonium tetrathiomolybdate (ATT) solids under an argon atmosphere has been studied by simultaneous thermogravimetric and differential thermal analysis. The sequential products for the decomposition upon heating to 700 °C is ATT (hydrated)→(NH4)2MoS4→(NH4)HMoS4→H2MoS4→MoS3→ Mo2S5→MoS2. MoS2 forms between 230 and 260 °C and remains stable up to about 360 °C when it tends to be oxidized by residual oxygen, if present in the atmosphere. These findings suggest that the synthesis of MoS2 from (NH4)2MoS4 via formation of MoS3 is not a direct process, as previously reported, but rather a complex process involving a number of intermediate products (NH4)HMoS4, H2MoS4 and Mo2S5 which have not been reported before. That these products are only specific to the very narrow temperature regimes as revealed suggests that they are very unstable and short lived, that their presence is transient in nature and thus that ex-situ characterization of them is normally difficult. The presence of these intermediate products, as justified experimentally, is further interpreted in terms of their mutual structural similarities which improve understanding as to why MoS2 can usually be prepared from ATT by thermal decomposition, as in this case, or by other techniques, such as anodizing. Laminar morphology of MoS2 is revealed by transmission electron microscopy and its crystal structure examined by selected-area diffraction. Further ex-situ examination by X-ray photoelectron spectroscopy of this end product supports the feasibility of preparing MoS2 from aqueous solutions by anodizing. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Tsigdinos, in “Aspects of molybdenum and related chemistry”, edited by G. A. Tsigdinos and G. Moh (Springer, Berlin, 1978) p. 65-105.

    Google Scholar 

  2. E. Y. Rode and B. A. Lebedev, Russ. J. Inorg. Chem. 6 (1961) 608.

    Google Scholar 

  3. G. Guang, Y. Wu, J. Li and H. Liu, Acta Metall. Sin. B6 (1993) 102.

    Google Scholar 

  4. K. Isawa, M. Maejima and K. Sarawatari, New Mater. New Process. B 2 (1983) 420.

    Google Scholar 

  5. A. Muller and E. Diemann, Chem. Berlin 102 (1969) 2603.

    Google Scholar 

  6. J. C. Wildervanck and F. Jellinek, Z. Anorg. Allgem. Chem. 328 (1964) 309.

    Google Scholar 

  7. E. Y. Rode and B. A. Lebedev, Russ. J. Inorg. Chem. 6 (1961) 1189.

    Google Scholar 

  8. H. W. Wang, P. Skeldon, G. E. Thompson and G. C. Wood, J. Mater. Sci. 32 (1997) 497.

    Google Scholar 

  9. P. Skeldon, H. W. Wang and G. E. Thompson, Wear 206 (1997) 187.

    Google Scholar 

  10. G. W. Zhang, J. L. Quang, X. K. Meng, L. Ma, S. G. Qi and F. Zhang, Wear 162164 (1993) 450.

    Google Scholar 

  11. M. Breysse, R. Frety, M. Lacroix and M. Vrinat, in “Some recent developments in the chemistry of chromium, molybdenum and tungsten”, edited by J. R. Dilworth and M. F. Lappert (Royal Society of Chemistry, Dalton, 1983) p. 11.

    Google Scholar 

  12. R. J. H. Voorhoeve and H. B. M. Walters, Z. Anorg. Allgem. Chem. 376 (1970) 165.

    Google Scholar 

  13. F. Mawrow and M. Nokolow, Z. Anorg. Chem. 95 (1916) 188.

    Google Scholar 

  14. G. Nickless, “Inorganic sulphur chemistry” (Elsevier, Amsterdam, 1968) p. 712.

    Google Scholar 

  15. G. Gattow and A. Franke, Z. Anorg. Allgem. Chem. 352 (1967) 11.

    Google Scholar 

  16. K. Savari, Acta Crystallogr. 16 (1963) 719.

    Google Scholar 

  17. G. Gattow, Naturwissenschaften 46 (1959) 425.

    Google Scholar 

  18. H. W. Wang, P. Skeldon, G. E. Thompson and G. C. Wood, J. Mater. Sci. Lett. 15 (1996) 494.

    Google Scholar 

  19. H. W. Wang, P. Skeldon, G. E. Thompson, Surf. Coat. Technol. 91 (1997) 200.

    Google Scholar 

  20. J. S. Zabinski, T. George and B. J. Tatarchuk, Thin Solid Films 181 (1989) 485.

    Google Scholar 

  21. J. S. Zabinski, M. S. Donley, S. D. Walck, T. R. Schneider and N. T. McDevitt, Tribol. Trans. 38 (1995) 894.

    Google Scholar 

  22. T. A. Patterson, J. C. Carver, D. E. Leyden and D. M. Hercules, J. Phys. Chem. 80 (1976) 1700.

    Google Scholar 

  23. H. W. Wang, P. Skeldon and G. E. Thompson, Surf. Coat. Technol. 88 (1997) 269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H.W., Skeldon, P. & Thompson, G.E. Thermogravimetric–differential thermal analysis of the solid-state decomposition of ammonium tetrathiomolybdate during heating in argon. Journal of Materials Science 33, 3079–3083 (1998). https://doi.org/10.1023/A:1004335604327

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004335604327

Keywords

Navigation