Skip to main content
Log in

Strength of β-sialon/Si3N4 layered composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The strength of layered composites consisting of β-sialon and Si3N4 layers, which were prepared by hot pressing, was investigated. The strength increased as the thickness of the sialon (outer layer) decreased, and reached almost the same level of Si3N4 (inner layer) when the sialon thickness was 250–300 μm. No specific fracture morphologies were recognized around the interface of sialon and Si3N4. The aluminium concentration changed sharply around the interface, while the yttrium tended to diffuse deeper than aluminium. This tendency was remarkable in the samples hot-pressed at higher temperature (1900°C). The existence of compressive residual stress in the surface sialon layer was revealed and the residual stress increased as the sialon thickness decreased down to 250–300 μm. The increase of strength with the decrease of sialon thickness was discussed based on the mechanical calculations in which the residual stress was considered. This calculation approximately agreed with the results of the samples hot-pressed at lower temperature (1800°C). However, the strength of the samples hot-pressed at 1900°C was much higher than the prediction in the thin range of the sialon thickness. The deep diffusion of yttrium into the sialon layers was thought to be one of the causes of this unpredictable effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ziegler, J. Heinrich and G. WÖtting, J. Mater. Sci. 22 (1987) 3041.

    Google Scholar 

  2. J. Weiss, Ann. Rev. Mater. Sci. 11 (1981) 381.

    Google Scholar 

  3. T. EkstrÖm and M. Nygren, J. Amer. Ceram. Soc. 75 (1992) 259.

    Google Scholar 

  4. K. H. Jack, J. Mater. Sci. 11 (1976) 1135.

    Google Scholar 

  5. K. H. Jack and W. I. Wilson, Nature (Lond.) Phys. Sci. 238 (1977) 28.

    Google Scholar 

  6. J. S. Moya, R. Moreno and J. Requena, J. Eur. Ceram. 7 (1991) 27.

    Google Scholar 

  7. J. Requena, R. Moreno and J. S. Moya, J. Amer. Ceram. Soc. 72 (1989) 1511.

    Google Scholar 

  8. H. Wohlfromm, P. Pena, J. S. Moya and J. Requena, ibid. 75 (1992) 3474.

    Google Scholar 

  9. R. Moreno, A. J. Sanchez-Herencia and J. S. Moya, in, “Functionally Gradient Materials” (Ceramic Transactions 42) edited by J. B. Holt, M. Koizumi, T. Hirai and Z. A. Munir (American Ceramic Society, Columbus, OH, 1993) p. 149.

    Google Scholar 

  10. J. Requena, J. S. Moya and P. Pena, ibid. p. 203.

  11. D. B. Marshall, Amer. Ceram. Soc. Bull. 71 (1992) 969.

    Google Scholar 

  12. D. B. Marshall, J. J. Ratto and F. F. Lange, J. Amer. Ceram. Soc. 74 (1991) 2979.

    Google Scholar 

  13. W. J. Clegg, K. Kendall, N. MĆn. Alford, T. W. Button and J. D. Birchall, Nature 347 (1990) 455.

    Google Scholar 

  14. H. Katsuki, H. Ichinose, A. Shiraishi, H. Takagi and Y. Hirata, J. Ceram. Soc. Jpn. 101 (1993) 1068.

    Google Scholar 

  15. R. A. Cutler, J. D. Bright, A. V. Virkar and D. K. Shetty, J. Amer. Ceram. Soc. 70 (1987) 714.

    Google Scholar 

  16. A. V. Virkar, J. L. Huang and R. A. Cutler, J. Amer. Ceram. Soc. 70 (1987) 164.

    Google Scholar 

  17. A. V. Virkar, J. F. Jue, J. J. Hansen and R. A. Cutler, ibid. 71 (1988) C148.

    Google Scholar 

  18. R. Sathyamoorthy, A. V. Virkar and R. A. Cutler, ibid. 75 (1992) 1136.

    Google Scholar 

  19. Y. Goto, T. Yonezawa, A. Tsuge and M. Komatsu, in, “Proceedings of the 3rd Fall Symposium of the Ceramic Society of Japan, edited by N. Mizutani (Ceramic Society of Japan, Tokyo, 1990) p. 148.

    Google Scholar 

  20. M. Asayama, T. Kameda and M. Komatsu, ibid., p. 92.

  21. M. Asayama and T. Kameda, FC Report 10 (1992) 267.

    Google Scholar 

  22. A. Tsuge and K. Nishida, Amer. Ceram. Soc. Bull. 57 (1978) 424.

    Google Scholar 

  23. A. Tsuge, K. Nishida and M. Komatsu, J. Amer. Ceram. Soc. 58 (1975) 323.

    Google Scholar 

  24. B. D. Cullity, “Elements of X-Ray Diffraction” (Addison-Wesley, Reading, MA, 1978) p. 447.

    Google Scholar 

  25. H. Iwasaki, in, “Mechanical Properties of Ceramics”, edited by T. Hanazawa (Ceramic Society of Japan, Tokyo, 1979) p. 115.

    Google Scholar 

  26. Y. S. Touloukian, R. K. Kirby, R.E. Taylor and T. Y. Lee, “Thermal Expansion of Nonmetallic Solids” (IFI/Prenum, New York, 1977) p. 19.

    Google Scholar 

  27. H. Abe, in “Mechanical Properties of Ceramics”, edited by T. Hanazawa (Ceramic Society of Japan, Tokyo, 1979) p. 174.

    Google Scholar 

  28. A. Atsumi, K. Suzuki and K. Mikata, “Strength of Materials” (Morikita Shuppan, Tokyo, 1976) p. 61.

    Google Scholar 

  29. A. Atsumi, K. Suzuki and K. Mikata, ibid., p. 124.

  30. T. EkstrÖm, P. O. KaÄll, M. Nygren and P. O. Olsson, J. Mater. Sci. 24 (1989) 1853.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, Y., Fukasawa, T. & Kato, M. Strength of β-sialon/Si3N4 layered composites. Journal of Materials Science 33, 423–427 (1998). https://doi.org/10.1023/A:1004332132338

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004332132338

Keywords

Navigation