Skip to main content
Log in

1H nuclear magnetic resonance characterization of Portland cement: molecular diffusion of water studied by spin relaxation and relaxation time-weighted imaging

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Water molecular dynamics in a hardened Portland cement were characterized by proton Fourier transform nuclear magnetic resonance (NMR) at 400 MHz. Three different types of water molecule (physically bound, chemically bound and porous trapped) were observed. When the hardened cement sample was heated at 105 °C, the physically bound water diffused out of the sample as a function of the heating time while the chemically bound water remained in a stable form. A trace amount of the porously trapped water was also detected to remain in the cavities of the hardened cement even after heating for up to 20 h at this temperature. The loss of the physically bound water proved to be a diffusion-controlled process as evidenced from the NMR data and from a gravimetric technique. A Pake doublet was observed in the NMR spectra. This is a result of the oscillation of the water molecules with hindered molecular motions due to their entrapment in the cement pores. Soaking the dried samples in water resulted in the diffusion of water back into the hardened cement as physically bound water. Nuclear spin–spin relaxation time, T2-weighted imaging showed that the distribution of the physically bound water inside the cylindrical sample formed a doughnut shape after overnight soaking. The residual air in the cement pores may have slowed down the diffusion rate of the water molecules back into the dried cement. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. Lea, “The chemistry of cement and concrete” (Chemical Publishing Company, New York, 3rd Edn, 1971).

    Google Scholar 

  2. A. M. Neville, “Properties of concrete” (Pitman Press, Bath, 1972).

    Google Scholar 

  3. D. P. Bentz and E. J. Garboczi, Cement Concr. Res. 21 (1991) 325.

    Google Scholar 

  4. M. Geiker, PhD thesis, Technical University of Denmark, Lyngby (1983).

    Google Scholar 

  5. H. F. W. Taylor, “Cement chemistry” (Academic Press, London, 1990).

    Google Scholar 

  6. P. Colombet and A. R. Grimmer, “Application of NMR spectroscopy to cement science” (Gordon and Breach, New York, 1994).

    Google Scholar 

  7. G. Papavassiliou, F. Milia, M. Fardis, R. Rumm and E. Laganas, J. Amer. Ceram. Soc. 76 (1993) 2109.

    Google Scholar 

  8. J. C. Mactavish, L. Miljkovic, M. M. Pintar, R. Blinc and G. Lahajnar, Cement. Concr. Res. 15 (1985) 367.

    Google Scholar 

  9. D. D. Lasic, M. M. Pintar and R. Blinc, Phil. Mag. Lett. 58 (1988) 227.

    Google Scholar 

  10. S. Bhattacharja, M. Moukwa, F. Dorazio, J. Yehng and W. P. Halperin, Adv. Cement Based Mater. 1 (1993) 67.

    Google Scholar 

  11. S. Bhattacharja, F. D'orazio, J. C. Tarczon and W. P. Halperin, J. Amer. Ceram. Soc. 72 (1989) 2126.

    Google Scholar 

  12. F. D'orazio, J. C. Tarczon, W. P. Halperin, K. Eguchi and T. Mizusaki, J. Appl. Phys. 65 (1989) 742.

    Google Scholar 

  13. A. B. Kudrjavtsev, T. V. Kouznetsova and A. V. Pyatkova, Cement. Concr. Res. 20 (1990) 407.

    Google Scholar 

  14. T. V. Kouznetsova and A. V. Pyatkova, V. G. Akimov and A. B. Kudrjavtsev, Trudy Musk. Khim.-Tekhnol. Inst. 137 (1987) 101.

    Google Scholar 

  15. L. H. Bennett, P. S. Wang and M. J. Donahue, J. Appl. Phys. 79 (1996) 4712.

    Google Scholar 

  16. P. S. Wang, D. B. Minor and S. G. Malghan, J. Mater. Sci. 28 (1993) 4940.

    Google Scholar 

  17. P. S. Wang, S. G. Malghan, S. J. Dapkunas, K. F. Hens and R. Raman, ibid. 30 (1995) 1059.

    Google Scholar 

  18. Idem., ibid. 30 (1995) 1069.

    Google Scholar 

  19. P. S. Wang, J. Mater. Sci. (1996) submitted.

  20. D. D. Ellman and D. Williams, J. Chem. Phys. 25 (1956) 742.

    Google Scholar 

  21. J. A. Moreno, S. Mizrachi and V. Oppeltz, Solid State Commun. 51 (1984) 597.

    Google Scholar 

  22. F. Holuj and J. Wieczorek, Can. J. Phys. 55 (1977) 654.

    Google Scholar 

  23. D. M. Henderson and H. S. Gutowsky, Am. Mineralogist 47 (1962) 1231.

    Google Scholar 

  24. G. E. Pake, J. Chem. Phys. 16 (1948) 327.

    Google Scholar 

  25. F. Bloch, Phys. Rev. 70 (1946) 460.

    Google Scholar 

  26. C. P. Slichter, “Principles of magnetic resonance” (Springer, Berlin, 1989) Chapter 2.

    Google Scholar 

  27. P. S. Wang, (1998) to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P.S., Ferguson, M.M., Eng, G. et al. 1H nuclear magnetic resonance characterization of Portland cement: molecular diffusion of water studied by spin relaxation and relaxation time-weighted imaging. Journal of Materials Science 33, 3065–3071 (1998). https://doi.org/10.1023/A:1004331403418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004331403418

Keywords

Navigation