Skip to main content
Log in

Simulation of Correlated Non-Gaussian Pressure Fields

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Abstract. Among a host of techniques developed for the analysis and prediction of nonlinear structural response, simulation methods are gaining popularity as computational efficiency increases. Implementation of time domain methods require simulated load time histories with case-specific statistical and spectral characteristics. When the assumption of Gaussian wind loading is inappropriate, techniques for simulating non-Gaussian loading must be sought. Over a larger expanse of building surface, simulation of correlated loads at several spatially separated locations is required. This work introduces a multi-variate non-Gaussian simulation method capable of producing realizations with a wide range of spectral and probabilistic characteristics. The correlation between multiple locations is accurately simulated simultaneously, while retaining the appropriate spectral and probabilistic content at each location.

Sommario. Tra la varie tecniche per l'analisi e la previsione della risposta structurale non lineare, stanno acquistando grande popolarità i metodi di simulazione poiché incrementano l'efficienza computazionale. L'implementazione dei metodi nel domino del tempo richiede la simulazione di storie temporali di carico con specifiche caratteristiche statistiche e spettrali. Quando l'ipotesi di gaussianità dell'azione del vento non risulta adeguata puòessere necessario ricorrere a techniche di simulazione di carichi non gaussiani. Per superfici di edifici più estese è richiesta la simulazione di carichi correlati in diverse posizioni separate spazialmente. La presente memoria introduce un metodo di simulazione multivariata non-gaussiana capace di riprodurre realizzazioni con un ampio campo di caratteristiche spettrali e probabilistiche. La correlazione tra le molteplici posizioni viene simulata simultaneamente in modo accurato mantenendo in ciascuna posizione caratteristiche spettrali e probabilistiche appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammon, D., ‘Approximation and generation of gaussian and non-Gaussian stationary processes’, Structural Safety 8 (1990) 153–160.

    Google Scholar 

  2. Elishakoff, I., Ren, Y.J. and Shinozuka, M., ‘Conditional simulation of non-Gaussian random fields’, Eng. Struct. 16(7) (1994) 558–563.

    Google Scholar 

  3. Grigoriu, M., ‘Crossing of non-Gaussian translation processes’, J. Eng. Mech., ASCE 110(EM4) (1984) 610–620.

    Google Scholar 

  4. Grigoriu, M., ‘On the spectral representation method in simulation’, Prob. Eng. Mech. 8 (1993) 75–90.

    Google Scholar 

  5. Grigoriu, M., Applied Non-Gaussian Processes, PTR Prentice Hall, Englewood Cliffs, NJ, 1995.

    Google Scholar 

  6. Gurley, K. and Kareem, A., Analysis, interpretation, modelling and simulation of unsteady wind and pressure data. To appear in the Journal of Wind Engineering and Industrial Aerodynamics 1977.

  7. Gurley, K., Kareem, A. and Tognarelli, M.A., ‘Simulation of a class of non-normal random processes’, International Journal of Nonlinear Mechanics 31(5) (1996) 601–617.

    Google Scholar 

  8. Lawrence, A.J. and Lewis, P.A.W., ‘Modelling and residual analysis of non-linear autoregressive time series in exponential variables’, J. of the Royal Society, Series B 47(2) (1985) 162–202.

    Google Scholar 

  9. Poirion, F., ‘Numerical simulation of homogeneous non-Gaussian random vector fields’, J. Snd. Vib. 160(1) (1993) 25–42.

    Google Scholar 

  10. Shinozuka, M., ‘Simulation of multivariate and multidimensional random processes’, J. of Acoust. Soc. Am. 49 (1971) 357–368.

    Google Scholar 

  11. Shinozuka, M. and Jan, C.M., ‘Digital simulation of random processes and its applications’, J. Snd. Vib. 25(1) (1972) 111–128.

    Google Scholar 

  12. Winterstein, S.R., ‘Nonlinear vibration models for extremes and fatigue’, J. Eng. Mech., ASCE 114(10) (1988) 1772–1790.

    Google Scholar 

  13. Wittig, L.E. and Sinha, A.K., ‘Simulation of multicorrelated random processes using the FFT algorithm’, J. Acoust. Soc. Am. 58(3) (1975) 630–634.

    Google Scholar 

  14. Yamazaki, F. and Shinozuka, M., ‘Digital generation of non-Gaussian stochastic fields’, J. Eng. Mech.. ASCE 114(7) (1988) 1183–1197.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurley, K., Kareem, A. Simulation of Correlated Non-Gaussian Pressure Fields. Meccanica 33, 309–317 (1998). https://doi.org/10.1023/A:1004315618217

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004315618217

Navigation