Skip to main content
Log in

Evidence for a nutritional disorder of Oxalis acetosella L. on acid forest soils; II. Diagnostic field experiments and nutrient solution studies

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Different field experiments were performed to discover the main factor(s) responsible for the poor leaf growth, moderate propagation and leaf chlorosis of Oxalis acetosella in an old Norway spruce stand with acid soil (Höglwald Forest). A previous study had suggested, that Ca (or Mg) deficiency or Mn toxicity could be involved.

In a Main Diagnostic Field Experiment with an intact population, Ca and Mg were either applied as sulphate or carbonate to distinguish between nutritional and pH effects. Mn and Si were also applied to aggravate or overcome possible effects of Mn toxicity. Enhancement experiments with different amounts of CaSO4 were conducted to investigate the Ca dose-effect relationship under field conditions. Additional trials with SrCO3, BaCO3 and NaHCO3 had the goal to raise the soil pH without supply of nutrients.

Greenhouse experiments with Oxalis acetosella supplemented the field studies by investigating the Ca and Mn dose-effect relationships under controlled conditions. Growth, vitality and nutrition of Oxalis were studied in a nutrient solution culture at pH 4.0 over a range of concentrations of Ca (20 to 5000 μmol L-1) and Mn (5 to 1000 μmol L-1) respectively. Furthermore, the effects of two contrasting ammonium/nitrate ratios were tested. The nutritional composition of the basal nutrient solution and the microclimate in the greenhouse were as far as possible adjusted to the environmental conditions of the plant in the Höglwald Forest.

All these studies led to the conclusion, that the moderate growth and vitality of Oxalis in the Höglwald Forest was mainly due to an insufficient Ca supply, rather than an effect of Mg deficiency, low soil pH or Mn toxicity. The application of CaSO4 caused a similar stimulation of the growth as CaCO3. A clearly positive, close CaSO4 dose-effect relationship was detected in field experiments as well as in the nutrient solution study. The same type of leaf chloroses as in the field was reproduced through low Ca nutrient solutions. Predominant ammonium nutrition may significantly impair Ca uptake.

Oxalis acetosella displayed a relatively high leaf tissue tolerance of excessive Mn. There was no indication for a Mn-induced Ca deficiency in the Höglwald Forest. Enhanced Si uptake led to a partial vitalization of Oxalis; the reason for that remained unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson M E 1993 Aluminium and hydrogen ions-limiting factors for growth and distribution of beech forest plants. Doctoral Dissertation. University of Lund, Lund, Sweden.

    Google Scholar 

  • Bangerth F 1979 Calcium-related physiological disorders of plants. Annu. Rev. Phytopathol. 17, 97–122.

    Google Scholar 

  • Baumeister W and Ernst W 1978 Mineralstoffe und Pflanzenwachstum. G. Fischer Verlag, Stuttgart. 416 p.

    Google Scholar 

  • Bergmann W 1988 Ernährungsstörungen bei Kulturpflanzen. G. Fischer Verlag, Jena. 762 p.

    Google Scholar 

  • Bornkamm R 1965 Die Rolle des Oxalats im Stoffwechsel höherer grüner Pflanzen. Flora (Abt. A) 156, 139–171.

    Google Scholar 

  • Birecka H and Miller A 1974 Cell wall and protoplast isoperoxidases in relation to injury, indoleacetic acid, and ethylene effects. Plant Physiol. 53, 569–574.

    Google Scholar 

  • Boxman A W and Roelofs J G M 1988 Some effects of nitrate versus ammonium nutrition on the nutrient fluxes in Pinus silvestris seedlings. Effects of mycorrhizal infection. Can. J. Bot. 66, 1091–1097.

    Google Scholar 

  • Brumagen D M and Hiatt A J 1966 The relationship of oxalic acid to the translocation and utilization of calcium in Nicotiana tabacum. Plant Soil 24, 239–249.

    Google Scholar 

  • Bussler W 1963 Calcium-Mangelsymptome an höheren Pflanzen. Z. Pflanzenernähr. Bodenkd. 100, 129–142.

    Google Scholar 

  • Ellenberg H 1958 Bodenreaktion (einschliesslich Kalkfrage). In Handbuch der Pflanzenphysiologie IV. Ed. W Ruhland. pp 638–708. Springer Verlag, Berlin.

    Google Scholar 

  • Emadian S F and Newton R J 1989 Growth enhancement of loblolly pine (Pinus taeda L.) seedlings by silicon. J. Plant Physiol. 134, 98–103.

    Google Scholar 

  • Evers F H 1964 Die Bedeutung der Stickstofform für Wachstum und Ernährung der Pflanzen, insbesondere der Waldbäume. Mitt. Ver. Forstl. Standortsk. Forstpfl. Zücht. 14, 19–37.

    Google Scholar 

  • Foy C D, Chaney R L and White M C 1978 The physiology of metal toxicity in plants. Annu Rev. Plant Physiol. 29, 511–566.

    Google Scholar 

  • Franceschi V R and Horner H 1980 Calcium oxalate crystals in plants. Bot. Rev. 46, 361–427.

    Google Scholar 

  • Gebauer G, Rehder H and Wollenweber B 1988 Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomic groups of central Europe. Oecologia 75, 371–385.

    Google Scholar 

  • Haynes R J 1986 Uptake and assimilation of mineral nitrogen by plants. In Mineral Nutrition in the Plant-Soil System. Ed. R J Haynes. pp 303–378. Academic Press, Inc., San Diego.

    Google Scholar 

  • Henrichfreise A 1976 Aluminium-und Mangantoleranz von Pflanzen saurer und basischer Böden. Doctoral Dissertation, University Münster.

  • Horst W J 1988 The physiology of manganese toxicity. In Manganese in Soils and Plants. Eds. R D Graham et al. pp 175–188. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Horst W J and Marschner H 1978 Effect of silicon on manganese tolerance of bean plants (Phaseolus vulgaris L.). Plant Soil 50, 287–303.

    Google Scholar 

  • Kirkby E A and Pilbeam D J 1984 Calcium as a plant nutrient. Plant Cell Environ 7, 397–405.

    Google Scholar 

  • Libert B and Franceschi V R 1987 Oxalate in crop plants. J. Agric. Food Chem. 35, 926–938.

    Google Scholar 

  • Lötsch B and Kinzel H 1971 Zum Calciumbedarf von Oxalatpflanzen. Biochem. Physiol. Pflanzen (BPP) 162, 209–219.

    Google Scholar 

  • Marschner H 1986 Mineral nutrition of higher plants. First Edition. Academic Press, London. 674 p.

    Google Scholar 

  • Norusis M J 1986 SPSS/PC +. SPSS Inc., America.

    Google Scholar 

  • Oberdorfer E 1979 Pflanzensoziologische Exkursionsflora. 4. Aufl. Verlag E. Ulmer, Stuttgart. 997 p.

    Google Scholar 

  • Packham J R 1978 Biological flora of the British Isles. Oxalis acetosella L. J. Ecol 66, 669–693.

    Google Scholar 

  • Poovaiah B W and Leopold A C 1976 Effects of inorganic salts on tissue permeability. Plant Physiol. 58, 182–185.

    Google Scholar 

  • Rodenkirchen H 1992 Experimentelle Untersuchungen zur Wirkung von Stoffeinträgen auf Waldbodenpflanzen unter besonderer Berücksichtigung der Mineralstoffernährung von Oxalis acetosella L. Habilitation Thesis, Faculty of Forest Sciences. University München. 235 p.

  • Rodenkirchen H 1993 Einfluss von saurer Beregnung und Kalkung auf die potentielle Stickstoffnettomineralisation, Nitrifikation und Nitrataufnahme in einem Fichtenaltbestand. Mitt. Dtsch. Bodenkundl. Ges. 72, 619–622.

    Google Scholar 

  • Rorison I H 1986 The response of plants to acid soils. Experientia 42, 357–362.

    Google Scholar 

  • Runge M 1983 Physiology and ecology of nitrogen nutrition. In Physiological Plant Ecology III. Encycl. Plant Physiol. Eds. O L Lange, P S Nobel, C B Osmond and H Ziegler. pp 163–200. Springer Verlage, Berlin.

    Google Scholar 

  • Runge M and Rode M W 1991 Effects of soil acidity on plant associations. In Soil Acidity. Eds. B Ulrich and M E Summer. pp 183–202. Springer Verlag, Berlin.

    Google Scholar 

  • Scharrer K and Jung J 1955 Der Einfluβ der Ernährung auf das Verhältnis von Kationen zu Anionen in der Pflanze. Z Pflanzenernähr. Bodenkd. 71, 76–94.

    Google Scholar 

  • Schlichting E, Blume H P and Stahr K 1995 Bodenkundliches Praktikum. 2nd Ed. Blackwell Wissenschafts-Verlag, Berlin. 295 p.

    Google Scholar 

  • Seidling W and Rohner M S 1993 Zusammenhänge zwischen Reaktions-Zeigerwerten und bodenchemischen Parametern am Beispiel von Waldbodenvegetation. Phytocoenologia 23, 301–317.

    Google Scholar 

  • Wallace A and Mueller R T 1980 Calcium uptake and distribution in plants. J. Plant Nutr. 2, 247–255.

    Google Scholar 

  • Wissemeier A H 1988 Beziehung zwischen Mangantoleranz und Oxidation von Mangan in Blättern von Cowpea-Genotypen (Vigna unguiculata (L.) Walp.). Doctoral Thesis, University Hohenheim.

  • Yoshida S, Javasero S A and Ramirez E A 1969 Effects of silicia and nitrogen on some leaf characters of the rice plant. Plant Soil 31, 48–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodenkirchen, H. Evidence for a nutritional disorder of Oxalis acetosella L. on acid forest soils; II. Diagnostic field experiments and nutrient solution studies. Plant and Soil 199, 153–166 (1998). https://doi.org/10.1023/A:1004296115612

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004296115612

Navigation