Skip to main content
Log in

Mantle Bouguer Anomaly Along an Ultra Slow-Spreading Ridge: Implications for Accretionary Processes and Comparison with Results from Central Mid-Atlantic Ridge

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

A three-dimensional analysis of gravity andbathymetry data has been achieved along the Southwest Indian Ridge (SWIR)between the Rodriguez Triple Junction (RTJ) and the Atlantis II transform,in order to define the morphological and geophysical expression ofsecond-order segmentation along an ultra slow-spreading ridge(spreading rate of 8 mm/yr), and to compare it with awell-studied section along a slow-spreading ridge (spreadingrate of 12.5 mm/yr): the Mid-Atlantic Ridge (MAR) between 28°and 31°30′ N.

Between the Atlantis II transform and theRTJ, the SWIR axis exhibits a deep axial valley with an ∼30°oblique trend relative to the north–south spreading direction. Onlythree transform faults offset the axis, so the obliquity has to beaccommodated by the second-order segmentation. Alongslow-spreading ridges such as the MAR, second-order segmentshave been defined as linear features perpendicular to the spreadingdirection, with a shallow axial valley floor at the segment midpoint,deepening to the segment ends, and are associated with Mantle BouguerAnomaly (MBA) lows. Along the SWIR, our gravity study reveals the presenceof circular MBA lows, but they are spaced further apart than expected. Thesegravity lows are systematically centred over narrow bathymetric highs, andinterpreted as the centres of spreading cells. However, along some obliquesections of the axis, the valley floor displays small topographicundulations, which can be interpreted as small accretionary segments frommorphological analysis, but as large discontinuity domains from thegeophysical data. Therefore, both bathymetry and MBA variations have to beused to define the second-order segmentation of an ultraslow-spreading ridge. This segmentation appears to be characterisedby short segments and large oblique discontinuity domains. Analysis of alongaxis bathymetric and gravimetric profiles exhibits three different sectionsthat can be related to the thermal structure of the lithosphere beneath theSWIR axis.

The comparison between characteristics of segmentationalong the SWIR and the MAR reveals two major differences: first, the poorcorrelation between MBA and bathymetry variations and second, the largerspacing and amplitude of MBA lows along the SWIR compared to the MAR. Theseobservations seem to be correlated with the spreading rate and the thermalstructure of the ridge. Therefore, the gravity signature of the segmentationand thus the accretionary processes appear to be very different: there areno distinct MBA lows on fast-spreading ridges, adjacent ones on slowspreading ridges and finally separate ones on ultra slow-spreadingridges. The main result of this study is to point out that 2nd ordersegmentation of an ultra slow-spreading ridge is characterised bywide discontinuity domains with very short accretionary segments, suggestingvery focused mantle upwelling, with a limited magma supply through a cold,thick lithosphere. We also emphasise the stronger influence of themechanical lithosphere on accretionary processes along an ultra slow-spreading ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, R. E. and Buck, W. R., 1992, Crustal Control of Ridge Segmentation Inferred from Observations of the Reykjanes Ridge, Nature 357, 583–586.

    Google Scholar 

  • Carbotte, S. and Macdonald, K. C., 1992, East Pacific Rise 8°-10°30′ N: Evolution of Ridge Segments and Discontinuities from Sea MARC II and Three-Dimensional Magnetic Studies, J. Geophys. Res. 97, 6959–6982.

    Google Scholar 

  • Chadwick, J. W. W., Embley, R. W., and Fox, C. G., 1991, Evidence for Volcanic Eruptions on the Southern Juan de Fuca Ridge between 1981 and 1987, Nature 350, 416–418.

    Google Scholar 

  • Chapman, M. E., 1979, Techniques for Interpretation of Geoïde Anomalies, J. Geophys. Res. 84, 3793–3801.

    Google Scholar 

  • Debayle, E. and Leveque, J. J., 1995, Tomography of the Indian Ocean by Waveform Inversion, Terra Abstracts 7,84.

    Google Scholar 

  • Delaney, J. R., Johnson, H. P., and Karsten, J. L., 1981, The Juan de Fuca Ridge-Hot Spot Propagating Rift System: New Tectonic, Geochemical and Magnetic Data, J. Geophys. Res. 86, 11747–11750.

    Google Scholar 

  • Deplus, C., Maïa, M., Aslanian, D., and Gente, P., 1992, Segmentation of the Mid-Atlantic Ridge South of Kane Fracture Zone Revealed by Gravity Anomalies: Results of SEADMA 1 Cruise, Eos Trans. AGU 73, 568.

    Google Scholar 

  • Després, J., 1993, Evolution du point triple et de la dorsale Sudouest de l'Océan Indien depuis 8 millions d'années, Rapport de DEA, Paris VII, Paris.

    Google Scholar 

  • Detrick, R. S., 1991, Ridge Crest Magma Chambers: A Review of Results from Marine Seismic Experiments at the East Pacific Rise, in Peters, T. J., Nicolas, A., and Coleman, R. G. (eds.), Ophiolite Genesis and Evolution of the Oceanic Lithosphere,Kluwer Academic Publishers, Boston, pp. 7–20.

    Google Scholar 

  • Detrick, R.S., Needham, H.D., and Renard, V., 1995, Gravity Anomalies and Crustal Thickness Variations along the Mid-Atlantic Ridge between 33° N and 40° N, J. Geophys. Res. 100, 3767–3787.

    Google Scholar 

  • Dick, H. J. B., Schouten, H., Meyer, P. S., Gallo, D. G., Bergh, H., Tyce, R., Patriat, P., Johnson, K. T. M., Snow, J., and Fisher, A., 1991, Tectonic Evolution of the Atlantis II Fracture Zone, Proc. Ocean Drill. Program., Sci. Results 118, 359–398.

    Google Scholar 

  • Embley, R. W., Chadwick, J. W. W., Perfit, M. R., and Baker, E. T., 1991, Geology of the Northern Cleft Segment, Juan de Fuca Ridge: Recent Lava Flows, Sea-Floor Spreading, and the Formation of Megaplumes, Geology 19, 771–775.

    Google Scholar 

  • Embley, R. W., Feely, R. A., and Lupton, J. E., 1994, Introduction to Special Section on Volcanic and Hydrothermal Processes on the Southern Juan de Fuca Ridge, J. Geophys. Res. 99, 4735–4740.

    Google Scholar 

  • Fox, P. J. and Grindlay, N. R., 1991, The Mid-Atlantic Ridge (31° S-34°30′ S): Temporal and Spatial Variations of Accretionary Processes, Mar. Geophys. Res. 13, 1–20.

    Google Scholar 

  • Francis, T. J. G. and Raitt, R.W., 1967, Seismic Refraction Measurements in the Southern Indian Ocean, J. Geophys. Res. 72, 3015–3041.

    Google Scholar 

  • Gente, P., Pockalny, R. A., Durand, C., Deplus, C., Maia, M., Ceuleneer, G., Mével, C., Cannat, M., and Laverne, C., 1995, Characteristics and Evolution of the Segmentation of the Mid-Atlantic Ridge between 20° N and 24° N during the Last 10 Million Years, Earth Planet. Sci. Let. 129, 55–71.

    Google Scholar 

  • Grindlay, N. R. and Fox, P. J., 1991, Second-Order Ridge Axis Discontinuities in the South Atlantic: Morphology, Structure, and Evolution, Mar. Geophys. Res. 13, 21–49.

    Google Scholar 

  • Grindlay, N. R., Fox, P. J., and Vogt, P. R., 1992, Morphology and Tectonics of the Mid-Atlantic Ridge (25°-27°30′ S) from Sea Beam and Magnetic Data, J. Geophys. Res. 97, 6983–7010.

    Google Scholar 

  • Honsho, C., Tamaki, K., and Fujimoto, H., 1996, Three-Dimensional Magnetic and Gravity Studies of the Rodriguez Triple Junction in the Indian Ocean, J. Geophys. Res. 101, 15837–15848.

    Google Scholar 

  • Hwang, C. and Parsons, B., 1995, Gravity Anomalies Derived from Seasat, Geosat, ERS-1 and TOPEX-POSEIDON Altimetry and Ship Gravity: A Case Study over Reykjanes Ridge, Geophys. J. Int. 122, 551–568.

    Google Scholar 

  • Johnson, H. P. and Holmes, M., 1989, Evolution and Plate Tectonics: The Juan de Fuca Ridge, in Winterer, E. L., Hussong, D. M., and Decker, R. W. (eds.), The Geology of North America, Vol. IV, The Eastern Pacific Ocean and Hawaii, Geological Society of America, Boulder, pp. 73–91.

    Google Scholar 

  • Johnson, K. T. M. and Dick, H. J. B., 1992, Open System Melting and Temporal and Spatial Variation of Peridotite and Basalt at the Atlantis II Fracture Zone, J. Geophys. Res. 97, 9219–9241.

    Google Scholar 

  • Karsten, J. L., Delaney, J. R., Rhodes, J. M., and Liias, R. A., 1990, Spatial and Temporal Evolution of Magmatic Systems Beneath the Endeavour Segment, Juan de Fuca Ridge: Tectonic and Petrologic Constraints, J. Geophys. Res. 95, 19235–19256.

    Google Scholar 

  • Kuo, B. Y. and Forsyth, D.W., 1988, Gravity Anomalies of the Ridge-Transform System in the South Atlantic between 31° and 34.5° S: Upwelling Centres and Variation in Crustal Thickness, Mar. Geophys. Res. 10, 205–232.

    Google Scholar 

  • Lin, J. and Morgan, J. P., 1992, The Spreading Rate Dependence of Three-Dimensional Mid-Ocean Ridge Gravity Structure, Geophys. Res. Lett. 19, 13–16.

    Google Scholar 

  • Lin, J., Purdy, G. M., Schouten, H., Sempéré, J.-C., and Zervas, C., 1990, Evidence for Focused Magmatic Accretion along the Mid-Atlantic Ridge, Nature 344, 627–632.

    Google Scholar 

  • Macdonald, K. C., Fox, P. J., Perram, L. J., Eisen, M. F., Haymon, R. M., Miller, S. P., Carbotte, S. M., Cormier, M.-H., and Shor, A. N., 1988, A New View of the Mid-Ocean Ridge from the Behaviour of Ridge Axis-Discontinuities, Nature 335, 217–225.

    Google Scholar 

  • Macdonald, K. C., Scheirer, D. C., and Carbotte, S. M., 1991, Mid-Ocean Ridges: Discontinuities, Segments and Giant Cracks, Science 253, 986–994.

    Google Scholar 

  • Macdonald, K. C., Sempéré, J.-C., and Fox, P. J., 1984, The East Pacific Rise from Siquieros to the Orozco Fracture Zone: Along Strike Continuity of the Neovolcanic Zone and the Structure and Evolution of Overlapping Spreading Centres, J. Geophys. Res. 89, 6049–6069.

    Google Scholar 

  • Madsen, J. A., Detrick, R. S., Mutter, J. C., Buhl, P., and Orcutt, J. A., 1990, A Two-and Three-Dimensional Analysis of Gravity Anomalies Associated with the East Pacific Rise at 9° N and 13° N, J. Geophys. Res. 95, 4967–4987.

    Google Scholar 

  • Mark, K. M., 1996, Short-Wavelength Resolution of the Scripps/ NOAA Marine Gravity Field from Satellite Altimetry, EOS Trans. AGU 77, S79.

    Google Scholar 

  • Mendel, V., Sauter, D., Parson, L., and Vanney, J.-R., 1997, Segmentation and Morphotectonic Variations Along a Super Slow-Spreading Center: The Southwest Indian Ridge (57° E-70° E), Marine Geophysical Researches 19, 505–533 (this issue).

    Google Scholar 

  • Minshull, T. A. and White, R. S., 1996, Thin Crust on the Flanks of the Slow-Spreading Southwest Indian Ridge, Geophys. J. Int. 125, 139–148.

    Google Scholar 

  • Mitchell, N. C., 1991a, Distributed Extension at the Indian Ocean Triple Junction, J. Geophys. Res. 96, 8019–8043.

    Google Scholar 

  • Mitchell, N. C., 1991b, Investigation of the Structure and Evolution of the Indian Ocean Triple Junction Using GLORIA and Other Geophysical Techniques, Ph.D. Thesis, Oxford University.

  • Mitchell, N. C. and Parson, L. M., 1993, The Tectonic Evolution of the Indian Ocean Triple Junction, Anomaly 6 to Present, J. Geophys. Res. 98, 1793–1812.

    Google Scholar 

  • Morris, E. and Detrick, R. S., 1991, Three-Dimensional Analysis of Gravity Anomalies in the MARK Area, Mid-Atlantic Ridge 23° N, J. Geophys. Res. 96, 4355–4366.

    Google Scholar 

  • Muller, M. R., Minshull, T. A., and White, R. S., 1995, Crustal Structure at the Very Slow-Spreading Southwest Indian Ridge, Inter Ridge News 4, 3–6.

    Google Scholar 

  • Munschy, M., 1987, Etude géophysique détaillée du point triple de Rodriguez et de la zone axiale des trois dorsales associées, Thèse de Doctorat, Univ. Louis Pasteur, Strasbourg I.

    Google Scholar 

  • Munschy, M. and Schlich, R., 1989, The Rodriguez Triple Junction (Indian Ocean): Structure and Evolution for the Past One Million Years, Mar. Geophys. Res. 11, 1–14.

    Google Scholar 

  • Neumann, G. A. and Forsyth, D. W., 1993, The Paradox of the Axial Profile: Isostatic Compensation Along the Axis of the Mid-Atlantic Ridge?, J. Geophys. Res. 98, 17891–17910.

    Google Scholar 

  • Neumann, G. A., Forsyth, D. W., and Sandwell, D. T., 1993, Comparison of Marine Gravity from Shipboard and High-Density Satellite Altimetry Along the Mid-Atlantic Ridge, 30.5°-35.5° S, Geophys. Res. Lett. 20, 1639–1642.

    Google Scholar 

  • Pariso, J. E., Sempéré, J.-C., and Rommevaux, C., 1995, Temporal and Spatial Variations in Crustal Accretion Along Mid-Atlantic Ridge (29°-31°30′ N) Over the Last 10 Ma: Implication from a Three-Dimensional Gravity Study, J. Geophys. Res. 100, 17781–17794.

    Google Scholar 

  • Parmentier, E. M. and Morgan, J. P., 1990, Spreading Rate Dependence of Three-Dimensional Structure in Oceanic Spreading Centres, Nature 348, 325–328.

    Google Scholar 

  • Patriat, P., 1987, Reconstitution de l'évolution du système de dorsales de l'Océan Indien par les méthodes de la cinématique des plaques, 308 pp., Territoiredes Terres Australes et Antartiques Françaises,Paris.

  • Patriat, P., Deplus, C., Rommevaux, C., Sloan, H., Hunter, P., and Brown, H., 1990, Evolution of the Segmentation of the Mid-Atlantic Ridge between 28° and 29° N during the Last 10 MA: Preliminary Results from SARA Cruise (R/V Jean Charcot, May 1990), Eos Trans. AGU 71, 1629.

    Google Scholar 

  • Purdy, G. M., Sempéré, J.-C., Schouten, H., Dubois, D. L., and Goldsmith, R., 1990, Bathymetry of the Mid-Atlantic Ridge, 24°-31° N: A Map Series, Mar. Geophys. Res. 12, 247–252.

    Google Scholar 

  • Robinson, C. J., White, R. S., Bickle, M. J., and Minshull, T. A., 1996, Restricted Melting under the Very Slow-Spreading Southwest Indian Ridge; in MacLeod, C. J., Tyler, P. A., and Walker, C.L. (eds.), Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges, Geol. Soc. London, London, pp. 131–141.

    Google Scholar 

  • Rommevaux, C., 1994, Etude gravimétrique et magnétique de l'évolution de la segmentation des dorsales lentes, Thèse de Doctorat, Paris VII.

    Google Scholar 

  • Rommevaux, C., Deplus, C., Patriat, P., and Sempéré, J.-C., 1994, Three-Dimensional Gravity Study of the Mid-Atlantic Ridge: Evolution of the Segmentation Between 28° and 29° N during the last 10 m.y., J. Geophys. Res. 99, 3015–3029.

    Google Scholar 

  • Schlich, R., Munschy, M., Marthelot, J.-M., Royer, J.-Y., and Schaming, M., 1987, Les campagnes du N.O. Jean Charcot sur le point triple de Rodriguez (océan Indien): premiers résultats, Bull. Soc. Géol. France 8, 693–697.

    Google Scholar 

  • Schouten, H., Klitgord, K. D., and Whitehead, J. A., 1985, Segmentation of Mid-Ocean Ridges, Nature 317, 225–229.

    Google Scholar 

  • Sempéré, J.-C., Blondel, P., Briais, A., Fujiwara, T., Géli, L., Isezaki, N., Pariso, J. E., Parson, L., Patriat, P., and Rommevaux, C., 1995, The Mid-Atlantic Ridge between 29° N and 31°30′ N in the Last 10 Ma, Earth Planet. Sci. Lett. 130, 45–55.

    Google Scholar 

  • Sempéré, J.-C., Macdonald, K. C., and Miller, S. P., 1984, Overlapping Spreading Centres: 3D Inversion of the Magnetic Field at 9°03′ N on the East Pacific Rise, Geophys. J. R. Astron. Soc. 79, 799–811.

    Google Scholar 

  • Sempéré, J.-C., Purdy, G. M., and Schouten, H., 1990, Segmentation of the Mid-Atlantic Ridge between 24° N and 30°40′ N, Nature 344, 427–431.

    Google Scholar 

  • Sloan, H., 1993, Les flancs de la dorsale Médio-Atlantique entre 28° et 29° N, de 0 à 10 Ma: Le rôle de la segmentation axiale dans la fabrique du relief, Thèse de Doctorat, Paris VI.

  • Sloan, H. and Patriat, P., 1992, Kinematics of the North American-African Plate Boundary between 28° and 29° N during the Last 10 My: Evolution of the Axial Geometry and Spreading Rate and Direction, Earth Planet. Sci. Lett. 113, 323–341.

    Google Scholar 

  • Smith, W. H. F. and Sandwell, D. T., 1995, Marine Gravity Field Declassified Geosat and ERS-1 Altimetry, EOS Trans. AGU 76, 156.

    Google Scholar 

  • Smith, W. H. F. and Wessel, P., 1990, Gridding with Continuous Curvature Splines in Tension, Geophysics 55, 293–305.

    Google Scholar 

  • Sparks, D. W., Parmentier, E. M., and Phipps Morgan, J., 1993, Three-Dimensional Mantle Convection beneath a Segmented Spreading Centre: Implications for Along Axis Variations in Crustal Thickness and Gravity, J. Geophys. Res. 98, 21977–21995.

    Google Scholar 

  • Tapponnier, P. and Francheteau, J., 1978, Necking of the Lithosphere and the Mechanics of Slowly Accreting Plate Boundaries, J. Geophys. Res. 83, 3955–3970.

    Google Scholar 

  • Tivey, M. A., 1994, The Fine Scale Magnetic Anomaly Field over the Southern Juan de Fuca Ridge: The Axial Magnetic Low and Implications for Crustal Structure, J. Geophys. Res. 99, 4833–4855.

    Google Scholar 

  • Toft, P. B., Arkani-Hamed, J., and Haggerty, S. E., 1990, The Effect of Serpentinization on Density and Magnetic Susceptibility: A Petrophysical Model, Phys. Earth Planet. Inter. 65, 137–157.

    Google Scholar 

  • Tolstoy, M., Harding, A. J., and Orcutt, J. A., 1993, Crustal Thickness on the Mid-Atlantic Ridge: Bull's Eye Gravity Anomalies and Focused Accretion, Science 262, 726–729.

    Google Scholar 

  • Toomey, D. R., Purdy, G. M., Solomon, S. C., and Wilcock, W. S.D., 1990, The Three-Dimensional Seismic Velocity Structure of the East Pacific Rise Near Latitude 9°30′ N, Nature 347, 639–645.

    Google Scholar 

  • Wessel, P. and Smith, W. H. F., 1995, New Version of the Generic Mapping Tools Released, EOS Trans. AGU 76, 329.

    Google Scholar 

  • Whitehead, J. A., Dick, H. J. B., and Schouten, H., 1984, A Mechanism for Magmatic Accretion under Spreading Centres, Nature 312, 146–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rommevaux-Jestin, C., Deplus, C. & Patriat, P. Mantle Bouguer Anomaly Along an Ultra Slow-Spreading Ridge: Implications for Accretionary Processes and Comparison with Results from Central Mid-Atlantic Ridge. Marine Geophysical Researches 19, 481–503 (1997). https://doi.org/10.1023/A:1004269003009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004269003009

Navigation