Skip to main content
Log in

Genetics of Azospirillum brasilense with respect to ammonium transport, sugar uptake, and chemotaxis

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

This paper describes molecular aspects of Azospirillum-plant root association with respect to nitrogen flux and carbon utilization. In the first part, biochemical and genetic data are reported on the transport of ammonium and methylammonium in A. brasilense cells. Ammonium excreting A. brasilense mutants reported so far appear to result from alterations in genes encoding for enzymes involved in ammonium assimilation. Solid genetic evidence is given on the occurrence of a postulated ammonium transporter in A. brasilense. In the second part, biochemical and genetic evidence is likewise given for the occurrence of a high-affinity uptake system for D-galactose in A. brasilense. A sugar- binding protein that is part of this uptake system is required for chemotaxis of A. brasilense towards particular sugars, including D-galactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boussiba S, Dilling W and Gibson J 1984. Methylammonium transport in Anacystis nidulans R-2. J. Bacteriol. 160, 204–210.

    Google Scholar 

  • Boussiba S and Gibson J 1990 Ammonia translocation in cyanobacteria. FEMS Microbiol. Rev. 88, 1–14.

    Google Scholar 

  • Bozouklian H, Fogher C and Elmerich C 1986. Cloning and characterization of the glnA gene of Azospirillum brasilense Sp7. Ann. Inst. Pasteur/Microbiol. 137B, 3–18.

    Google Scholar 

  • Cangelosi G A, Ankenbauer R G and Nester E W 1990 Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proc. Natl. Acad. Sci. USA 87, 6708–6712.

    Google Scholar 

  • Christiansen-Weniger C, and van Veen J A 1991 NH +4 -Excreting Azospirillum brasilense mutants enhance the nitrogen supply of a wheat host. Appl. Environ. Microbiol. 57, 3006–3012.

    Google Scholar 

  • Cordts M L and Gibson J 1987 Ammonium and methylammonium transport in Rhodobacter sphaeroides and R. capsulata. J. Bacteriol. 169, 1632–1638.

    Google Scholar 

  • de Zamaroczy M, Paquelin A and Elmerich C 1993 Functional organization of the glnB-glnA cluster of Azospirillum brasilense. J. Bacteriol. 175, 2507–2515.

    Google Scholar 

  • Doty S L, Chang M and Nester E W 1993 The chromosomal virulence gene, chvE, of Agrobacterium tumefaciens is regulated by a LysR family member. J. Bacteriol. 175, 7880–7886.

    Google Scholar 

  • Fasman G D and Gilbert W A 1990 The prediction of transmembrane protein sequences and their conformation: an evaluation. Trends Biochem. Sci. 15, 89–92.

    Google Scholar 

  • Furlong C E 1987 Osmotic-shock-sensitive transport systems. In Escherichia coli and Salmonella typhimurium, cellular and molecular biology. Ed. N.C. Neidhardt, F.C., pp 768–796. American Society for Microbiology. Washington, D.C.

    Google Scholar 

  • Gauthier D and Elmerich C 1977 Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum. FEMS Microbiol. Lett. 2, 101–104.

    Google Scholar 

  • Hartmann A and Kleiner D 1982 Ammonium (methylammonium) transport by Azospirillum spp. FEMS Microbiol. Lett. 15, 65–67.

    Google Scholar 

  • Hartmann A et al. 1984 Advances in nitrogen fixation research. C. Veeger et al. eds. The Hague. pp 227.

  • Huang, M W, Cangelosi G A, Halperin W and Nester E W 1990 A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J. Bacteriol. 172, 1814–1822.

    Google Scholar 

  • Jayakumar A, Schulman I, MacNeil D and Barnes E M Jr 1986 Role of the Escherichia coli glnALG operon in regulation of ammonium transport. J. Bacteriol. 166, 281–284.

    Google Scholar 

  • Klein P, Kanehisa M and DeLisi C 1985 The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta 15, 468–76.

    Google Scholar 

  • Kleiner D 1982 Ammonium (methylammonium) transport by Klebsiella pneumoniae. Biochim. Biophys. Acta 688, 702–708.

    Google Scholar 

  • Kleiner D 1985 Bacterial ammonium transport. FEMS Microbiol. Rev. 32, 87–100.

    Google Scholar 

  • Liang Y Y, Arsène F and Elmerich C 1993 Characterization of the ntrBC genes of Azospirillum brasilense Sp7: their involvement in the regulation of nitrogenase synthesis and activity. Mol. Gen. Genet. 240, 188–196.

    Google Scholar 

  • Machado H B, Funayama S, Rigo L U and Pedrosa F O 1990 Excretion of ammonium by Azospirillum brasilense mutants resistant to ethylenediamine. Can. J. Microbiol. 57, 549–553.

    Google Scholar 

  • Marini A-M, Vissers S, Urrestarazu A and André B 1994 Cloning and expression of the mep1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO Journal 13, 3456–3463.

    Google Scholar 

  • Meletzus D, Doetsch N, He A, Green L, Rudnick P, Yan D and Kennedy C 1995 Genetic characterization of ammonium sensing and signal transduction in Azotobacter vinelandii. Nitrogen Fixation: Fundamentals and Applications. Eds. I.A. Tikhonovich et al. Kluwer Academic Publishers, the Netherlands. pp 220.

    Google Scholar 

  • Milcamps A, Van Dommelen A, Stigter J, Vanderleyden J and de Bruijn F 1996 Azospirillum ntrA gene is involved in nitrogen fixation, nitrate assimilation, ammonium uptake and flagella biosynthesis. Can. J. Microbiol. 42, 467–478.

    Google Scholar 

  • Ninneman O, Jauniaux J-C and Frommer W B 1994 Identification of a high affinity NH +4 transporter from plants. The EMBO Journal 13, 3464–3471.

    Google Scholar 

  • Okon Y 1994 Azospirillum-plant root associations. Boca Raton, Florida, CRC Press.

    Google Scholar 

  • Patriarca E J, Taté R, Riccio A, Chiurazzi M, Merrick M and Iaccarino M 1996 The Rhizobium etli amtB gene coding for a NtrCdependent ammonium transporter. Abstract of the 8th International Congress Molecular Plant-Microbe interactions. Eds. G. Stacey, B. Mullin, P.M. Gresshoff. poster H-18.

  • Servin-Gonzales L and Bastarrachea F 1984 Nitrogen regulation of the synthesis of the high affinity methylammonium transport system of Escherichia coli. J. Gen. Microbiol. 130, 3071–3077.

    Google Scholar 

  • Shanmugam K T and Valentine R C 1975 Microbial production of ammonium ion from nitrogen. Proc. Nat. Acad. Sci. USA 72, 136–139.

    Google Scholar 

  • Shimoda N, Toyoda-Yamamoto A, Aoki S and Machida Y 1993 Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium tumefaciens J. Biol. Chem. 268, 26552–26558.

    Google Scholar 

  • Singh H N, Singh R K and Sharma R 1983 An L-methionine-D,Lsulfoximine-resistant mutant of the cyanobacterium Nostoc muscorum showing inhibitor resistant-glutamyl-transferase, defective glutamine synthetase and producing extracellular ammonia during N2 fixation. FEBS Lett. 154, 10–14.

    Google Scholar 

  • Thomas S P, Zaritsky A and Boussiba S 1990 Ammonium excretion by an L-methionine-D,L-sulfoximine-resistant mutant of the rice field cyanobacterium Anabaena siamensis. Appl. Environ. Microbiol. 56, 3499–3504.

    Google Scholar 

  • Van Bastelaere E, Vermeiren H, Van Dommelen A, Keijers V, Proost P and Vanderleyden J 1997 Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars. Mol. Microbiol. (in press).

  • Van Heeswijk W C, Hoving S, Molenaar D, Stegeman B, Kahn D and Westerhoff H V 1996 An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli. Mol. Microbiol. 21, 133–146.

    Google Scholar 

  • Wray L V JR, Atkinson M R and Fisher S H 1994 The nitrogen regulated Bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glnB- encoded PII protein J. Bacteriol. 176, 108–114.

    Google Scholar 

  • Zhang Y, Burris R H, Ludden P W and Roberts G P 1994 Posttranslational regulation of nitrogenase activity in Azospirillum brasilense ntrBC mutants: ammonium and anaerobic switch-off occurs through independent signal transduction pathways. J. Bacteriol. 176, 5780–5787.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Dommelen, A., Van Bastelaere, E., Keijers, V. et al. Genetics of Azospirillum brasilense with respect to ammonium transport, sugar uptake, and chemotaxis. Plant and Soil 194, 155–160 (1997). https://doi.org/10.1023/A:1004250305689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004250305689

Navigation