Skip to main content

Radial stagnation flow on a rotating circular cylinder with uniform transpiration

Abstract

Radial stagnation flow of strain rate k impinging on a cylinder with uniform transpiration U0 and rotating at constant angular velocity ω is investigated. An exact reduction of the Navier-Stokes equations to a primary nonlinear equation for the meridional flow similar to that found by Wang [1] and a secondary linear equation for the azimuthal flow is obtained. The governing parameters are the stagnation-flow Reynolds number R = ka2/2v, the dimensionless transpiration S = U0/ka, and the dimensionless rotation rate ω = ω/k, where a is the cylinder radius and v is the kinematic viscosity of the fluid. The boundary-value problem is solved by numerical integration and by asymptotic analysis in certain limits. The results are succinctly summarized in plots of the axial and azimuthal shear-stress parameters as functions of R and S. Sample velocity profiles, meridional streamfunction plots, and projections of particle paths for both suction and blowing are given. An interesting double-layer structure in the azimuthal velocity profile, consisting of a removed free shear layer connected to a wall boundary layer, is observed at large values of blowing. This feature is consistent with results obtained from the asymptotic analysis.

This is a preview of subscription content, access via your institution.

References

  1. C.-Y. Wang, Axisymmetric stagnation flow on a cylinder. Q. Appl. Math. 32 (1974) 207-213.

    Google Scholar 

  2. C.-Y. Wang, Exact solutions of the steady-state Navier-Stokes equations. In: J. L. Lumley, M. Van Dyke, H. L. Reed (eds.) Ann. Rev. Fluid Mech. Palo Alto: Annual Reviews Incorporated 23 (1991) pp. 159-177.

    Google Scholar 

  3. R. S. R. Gorla, Nonsimilar axisymmetric stagnation flow on a moving cylinder. Int. J. Eng. Sci. 16 (1978) 392-400.

    Google Scholar 

  4. R. S. R. Gorla, Unsteady viscous flow in the vicinity of an axisymmetric stagnation point on a circular cylinder. Int. J. Eng. Sci. 17 (1979) 87-93.

    Google Scholar 

  5. R. S. R. Gorla, Transient response behavior of an axisymmetric stagnation flow on a circular cylinder due to a time dependent free stream velocity. Lett. Appl. Eng. Sci. 16 (1978) 493-502.

    Google Scholar 

  6. K. Hiemenz, Die Grenzschicht an einem in den gleichförmingen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech. J.326 (1911) 321-410.

    Google Scholar 

  7. F. Homann, Der Einfluss grosser Zähighkeit bei der Strömung um den Zylinder und um die Kugel. Zeitsch. Angew. Math. Mech. 16 (1936) 153-164.

    Google Scholar 

  8. F. S. Sherman, Viscous Flow. New York: McGraw-Hill (1990) 746 pp.

    Google Scholar 

  9. W.H. Press, B.P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes, 2ndedition. Cambridge: Cambridge University Press (1992) 963 pp.

    Google Scholar 

  10. J. Pretsch, Grenzen der Grenzschichtbeeinflussung. Zeitsch. Angew. Math. Mech. 24 (1944) 264-267.

    Google Scholar 

  11. L. Rosenhead, Laminar Boundary Layers. Oxford: Oxford University Press (1963) 688 pp.

    Google Scholar 

  12. H. K. Moffatt, The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1969) 117-129.

    Google Scholar 

  13. G. M. Cunning, Axisymmetric stagnation point flowon a rotating circular cylinder with uniform transpiration. Masters of Science Thesis, University of Colorado, Boulder, Colorado, USA (1995) 57 pp.

  14. D. R. Kassoy, On laminar boundary layer blowoff. SIAM J. Appl. Math. 49 (1970) 29-40.

    Google Scholar 

  15. J. B. Klemp and A. Acrivos, High Reynolds number flow past a flat plate with strong blowing. J. Fluid Mech. 51 (1972) 337-356.

    Google Scholar 

  16. H. K. Kuiken, The effect of normal blowing on the flow near a rotating disk of infinite extent. J. Fluid Mech. 47 (1971) 789-798.

    Google Scholar 

  17. N. Riley and P. D. Weidman, Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary. SIAM J. Appl. Math. 49 (1989) 1350-1358.

    Google Scholar 

  18. P. D. Weidman, New solutions for laminar boundary layers with cross flow. Zeitsch. Angew. Math. Phys. 48 (1997) 341-356.

    Google Scholar 

  19. F. Marquès, J. Sánchez, and P. D. Weidman, A generalized Couette-Poiseuille flow with boundary mass transfer. Submitted to J. Fluid Mech.

  20. P. A. Libby, Laminar flow at a three-dimensional stagnation point with large rates of injection. Am. Inst. Aeron. Astr. J. 14 (1976) 1273-1279.

    Google Scholar 

  21. L. Howarth, The boundary layer in three dimensional flow. Part II. The flow near a stagnation point. Phil. Mag. Series 7, 42 (1951) 1433-1440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cunning, G.M., Davis, A.M.J. & Weidman, P.D. Radial stagnation flow on a rotating circular cylinder with uniform transpiration. Journal of Engineering Mathematics 33, 113–128 (1998). https://doi.org/10.1023/A:1004243728777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004243728777

  • stagnation flow
  • rotation
  • suction
  • blow-off
  • exact solution