Skip to main content
Log in

Multilevel Analysis of Repeated Measures Data

  • Published:
Quality and Quantity Aims and scope Submit manuscript

Abstract

Hierarchically structured data are common in many areas of scientific research. Such data are characterized by nested membership relations among the units of observation. Multilevel analysis is a class of methods that explicitly takes the hierarchical structure into account. Repeated measures data can be considered as having a hierarchical structure as well: measurements are nested within, for instance, individuals. In this paper, an overview is given of the multilevel analysis approach to repeated measures data. A simple application to growth curves is provided as an illustration. It is argued that multilevel analysis of repeated measures data is a powerful and attractive approach for several reasons, such as flexibility, and the emphasis on individual development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bock, R. D. (1989). Multilevel Analysis of Educational Data, San Diego, CA: Academic Press.

    Google Scholar 

  • Box, G. E. P. (1950). Problems in the analysis of growth and wear curves, Biometrics 6: 362–389.

    Google Scholar 

  • Bryk, A. S. & Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change, Psychological Bulletin 101: 147–158.

    Google Scholar 

  • Bryk, A. S. & Raudenbush, S. W. (1992). Hierachical Linear Models: Applications and Data Analysis Methods, Newbury Park, CA: Sage Publications.

    Google Scholar 

  • Bryk, A. S., Raudenbush, S. W., Seltzer, M. & Congdon, R. T. (1988). An Introduction to HLM: Computer Program and User's Guide, University of Chicago.

  • Burstein, L., Linn, R. L. & Capell, F. J. (1978). Analyzing multilevel data in the presence of heterogeneous within-class regressions, Journal of Educational Statistics 3: 347–383.

    Google Scholar 

  • De Leeuw, J. & Kreft, I. G. G. (1986). Random coefficient models for multilevel analysis, Journal of Educational Statistics 11: 57–85.

    Google Scholar 

  • De Lury, D. B. (1950). Values and integrals of the orthogonal polynomials up to n = 50, Toronto: University of Toronto Press.

    Google Scholar 

  • Dempster, A. P., Rubin, D. B. & Tsutakawa, R. K. (1981). Estimation in covariance components models, Journal of the American Statistical Association 76: 341–353.

    Google Scholar 

  • Dixon, W. J. (1988). BMDP Statistical Software Manual Vol. 2. Berkeley, CA: University of California Press.

    Google Scholar 

  • Francis, B., Green, M. & Payne, C. (1993). The GLIM System, Release 4 Manual, Oxford, GB: Clarendon Press.

    Google Scholar 

  • Goldstein, H. (1986a). Efficient statistical modelling of longitudinal data, Annals of Human Biology 13: 129–141.

    Google Scholar 

  • Goldstein, H. (1986b). Multilevel mixed linear model analysis using iterative generalized least squares, Biometrika 73: 43–56.

    Google Scholar 

  • Goldstein, H. (1987). Multilevel Models in Educational and Social Research, London, GB: Oxford University Press.

    Google Scholar 

  • Goldstein, H. (1989). Models for multilevel response variables with an application to growth curves, in R. D. Bock (Ed.), Multilevel analysis of educational data, San Diego, CA: Academic Press, 107–125.

    Google Scholar 

  • Goldstein, H. (1995). Multilevel Statistical Models, (2nd edn), London, GB: Edward Arnold.

    Google Scholar 

  • Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems, Journal of the American Statistical Association 72: 320–340.

    Google Scholar 

  • Hills, M. (1974). Statistics for Comparative Studies, New York, NY: John Wiley.

    Google Scholar 

  • Jennrich, R. & Schluchter, M. (1986). Unbalanced repeated measures models with structured covariance matrices, Biometrics 42: 805–820.

    Google Scholar 

  • Kreft, I. G. G., De Leeuw, J. & Van der Leeden, R. (1994). A review of five multilevel analysis programs: BMDP-5V, GENMOD, HLM, ML3, VARCL, The American Statistician 48: 324–335.

    Google Scholar 

  • Laird, N. M. & Ware, J. H. (1982). Random effects models for longitudinal data, Biometrics 38: 963–974.

    Google Scholar 

  • Lindley, D. V. & Smith, A. F. M. (1972). Bayes estimates for the linear model, Journal of the Royal Statistical Society B34: 1–41.

    Google Scholar 

  • Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects, Biometrika 74: 817–827.

    Google Scholar 

  • Longford, N. T. (1990). VARCL. Software for Variance Component Analysis of Data with Nested Random Effects (Maximum Likelihood), Princeton, NJ: Educational Testing Service.

    Google Scholar 

  • Longford, N. T. (1993). Random Coefficient Models, Oxford, GB: Clarendon Press.

    Google Scholar 

  • McCullagh, P. & Nelder, J. A. (1989). Generalized linear models, 2nd edn. London, GB: Chapman & Hall.

    Google Scholar 

  • Morris, C. N. (1983). Parametric empirical Bayes inference: Theory and applications, Journal of the American Statistical Association 78: 47–65.

    Google Scholar 

  • Potthoff, R. F. & Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika 51: 313–326.

    Google Scholar 

  • Prosser, R., Rasbash, J. & Goldstein, H. (1991). ML3. Software for Three-Level Analysis. User's Guide for V. 2, London, GB: Institute of Education, University of London.

    Google Scholar 

  • Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves, Biometrika 52: 447–458.

    Google Scholar 

  • Rasbash, J., Yang, M., Woodhouse, G. & Goldstein, H. (1995). MLn: command reference guide, London, GB: Institute of Education, University of London.

    Google Scholar 

  • Raudenbush, S. W. (1988). Educational applications of hierarchical linear models: A review, Journal of Educational Statistics 13: 85–116.

    Google Scholar 

  • Raudenbush, S. W. (1989). The analysis of longitudinal, multilevel data, International Journal of Educational Research 13: 721–740.

    Google Scholar 

  • Strenio, J. F. (1981). Empirical Bayes estimation for a hierarchical linear model, Unpublished doctoral dissertation, Harvard University.

  • Strenio, J. F., Weisberg, H. I. & Bryk, A. S. (1983). Empirical Bayes estimation of individual growth curve parameters and their relationship to covariates, Biometrics 39: 71–86.

    Google Scholar 

  • Tate, R. L. & wongbundit, Y. (1983). Random versus non-random coefficient models for multilevel analysis, Journal of Educational Statistics 8: 103–120.

    Google Scholar 

  • Van der Leeden, R., Vrijburg, K. & De Leeuw, J. (1996). A review of two different approaches for the analysis of growth data using longitudinal mixed linear models: comparing hierarchical linear regression (ML3, HLM) and repeated measures design with structured covariance matrices (BMDP5V), Computational Statistics and Data Analysis 21: 581–605.

    Google Scholar 

  • Visser, R. A. (1985). Analysis of longitudinal data in behavioural and social research, Leiden, The Netherlands: DSWO Press

    Google Scholar 

  • Ware, J. H. (1985). Linear models for the analysis of longitudinal studies, Journal of the American Statistical Association 80: 95–101.

    Google Scholar 

  • Wilks, S. (1962). Mathematical Statistics, New York, NY: John Wiley.

    Google Scholar 

  • Willett, J. B. (1988). Questions and answers in the measurement of change, in E. Rithkopf (ed.), Review of Research in Education (1988–89), Washington, DC: American Educational Research Association, 345–422.

    Google Scholar 

  • Wishart, J. (1938). Growth rate determinations in nutrition studies with the bacon pig, and their analysis, Biometrika 30: 16–28.

    Google Scholar 

  • Zeger, S. L., Liang, K.-Y. & Albert, P. S. (1988). Models for longitudinal data: a generalized estimating equation approach, Biometrics 44: 1049–1060.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Leeden, R. Multilevel Analysis of Repeated Measures Data. Quality & Quantity 32, 15–29 (1998). https://doi.org/10.1023/A:1004233225855

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004233225855

Navigation