Skip to main content
Log in

Large-Eddy Simulations of Shear Flows

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The general framework of large-eddy simulations (LES) is presented first, with Smagorinsky's model. Afterwards, Kraichnan's spectral eddy-viscosity is introduced and it is shown how it can be handled for LES purposes in isotropic turbulence. The spectral eddy viscosity is generalized to a spectral eddy diffusivity. The nonlocal interaction theory is used to discuss the backscatter issue, and a generalization of spectral eddy coefficients is presented. This so-called spectral-dynamic model allows the representation of non-developed turbulence in the subgrid scales. Utilization of these spectral models in physical space is envisaged in terms of, respectively, the structure function and hyperviscosity models. Two applications of these models to shear flows are considered, namely the plane mixing layer and channel flow, with statistical results and information on the topology of coherent vortices and structures presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lesieur, Turbulence in Fluids, (Third Edition), Dordrecht: Kluwer Academic Publishers (1997) 515pp.

    Google Scholar 

  2. J. Smagorinsky, General circulation experiments with the primitive equations. Mon. Weath. Rev. 91 (1963) 99–164.

    Google Scholar 

  3. R.H. Kraichnan, Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33 (1976) 1521–1536.

    Google Scholar 

  4. M. Lesieur and O. Métais, New trends in large-eddy simulations of turbulence. Ann. Rev. Fluid Mech. 28 (1996) 45–82.

    Google Scholar 

  5. M. Germano, U. Piomelli, P. Moin and W. Cabot, A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A. 3 (1991) 1760–1765.

    Google Scholar 

  6. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod (1969) 554pp.

    Google Scholar 

  7. J. P. Chollet and M. Lesieur, Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 38 (1981) 2747–2757.

    Google Scholar 

  8. J.P. Chollet and M. Lesieur, Modélisation sous maille des flux de quantité de mouvement et de chaleur en turbulence tridimensionnelle isotrope. La Météorologie 29-30 (1982) 183–191.

    Google Scholar 

  9. M. Lesieur and R. Rogallo, Large-eddy simulation of passive-scalar diffusion in isotropic turbulence. Phys. Fluids A 1 (1989) 718–722.

    Google Scholar 

  10. M. Lesieur, O. Métais and R. Rogallo, Etude de la diffusion turbulente par simulation des grandes échelles. C.R. Acad. Sci. Paris Ser II 308 (1989) 1395–1400.

    Google Scholar 

  11. O. Métais and M. Lesieur, Spectral large-eddy simulations of isotropic and stably-stratified turbulence. J. Fluid Mech. 239 (1992) 157–194.

    Google Scholar 

  12. M. Lesieur and D. Schertzer, Amortissement auto similaire d'une turbulence à grand nombre de Reynolds. J. de Mécanique 17 (1978) 609–646.

    Google Scholar 

  13. O. Métais and M. Lesieur, Statistical predictability of decaying turbulence. J. Atmos. Sci. 43 (1986) 857–870.

    Google Scholar 

  14. E. Lamballais, Simulations Numériques de la Turbulence dans un Canal Plan Tournant. Thèse de l'Institut National Polytechnique de Grenoble (1995) 178pp.

  15. E. Lamballais, M. Lesieur, and O. Métais, Influence d'une rotation d'entraînement sur les tourbillons cohérents dans un canal. C. R. Acad. Sci. Paris Ser II 323 (1996) 95–101.

    Google Scholar 

  16. D. C. Leslie and G. L. Quarini, The application of turbulence theory to the formulation of subgrid modelling procedures. J. Fluid Mech. 91 (1979) 65–91.

    Google Scholar 

  17. F. Ducros, P. Comte and M. Lesieur, Direct and large-eddy simulations of a supersonic boundary layer. In: N. Kasagi and K. Suzuki (eds.), Turbulent Shear Flows IX, Berlin: Springer-Verlag, (1995) pp. 283–300.

    Google Scholar 

  18. E. David, Modélisation des Écoulements Compressibles et Hypersoniques: Une Approche Instationnaire. Thèse, Institut National Polytechnique de Grenoble (1993) 179pp.

  19. F. Ducros, Simulations Numériques Directes et des Grandes Echelles de Couches Limites Compressibles. Thèse, Institut National Polytechnique de Grenoble (1995) 180pp.

  20. F. Ducros, P. Comte and M. Lesieur, Large-eddy simulation of transition to turbulence in a boundary-layer developing spatially over a flat plate. J. Fluid Mech. 326 (1996) 1–36.

    Google Scholar 

  21. T. Herbert,, Secondary instability of boundary layers. Am. Rev. Fluid Mech. 20 (1988) 487–526.

    Google Scholar 

  22. E. Garnier, O. Métais and M. Lesieur, Instabilités primaires et secondaires dans un jet barocline. C.R. Acad. Sci. Paris Ser II b 323 (1996) 161–168.

    Google Scholar 

  23. J. Silvestrini, Simulation des Grandes Échelles des Zones de Mélange: Application à la Propulsion Solide des Lanceurs Spatiaux. Thèse de l'Institut National Polytechnique de Grenoble (1996) 150pp.

  24. J. H. Konrad, An Experimental Investigation of Mixing in Two-Dimensional Turbulent Shear Flows with Applications to Diffusion-Limited Chemical Reactions. Ph.D. Thesis, California Institute of Technology (1976).

  25. L. P. Bernal and A. Roshko, Streamwise vortes structure in plane mixing layer. J. Fluid Mech. 170 (1986) 499–525.

    Google Scholar 

  26. G. M. Corcos and S. J. Lin, The mixing layer: deterministic models of a turbulent flow. Part 2. The origin of the three-dimensional motion. J. Fluid Mech. 139 (1984) 67–95.

    Google Scholar 

  27. J. C. Neu, The dynamics of stretched vortices. J. Fluid Mech. 143 (1984) 253–276.

    Google Scholar 

  28. P. Comte and M. Lesieur, Coherent structures of mixing layers in large-eddy simulation. In: H. K. Moffatt (ed.) Topological Fluid Dynamic. Cambridge: Cambridge University Press (1989) pp. 649–658.

    Google Scholar 

  29. R. T. Pierrehumbert and S. E. Widnall, The two-and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114 (1982) 59–82.

    Google Scholar 

  30. P. Comte, Y. Fouillet, M. A. Gonze, M. Lesieur, O. Métais, and X. Normand, Large-eddy simulations of free-shear layers. In: O. Métais and M. Lesieur (eds.) Turbulence and coherent structures. Kluwer Academic Publishers (1991) pp. 45–73.

  31. P. Comte, M. Lesieur, and E. Lamballais, Large and small-scale stirring of vorticity and a passive scalar in a 3D temporal mixing layer. Phys. Fluids A 4 (1992) 2761–2778.

    Google Scholar 

  32. C. Chandrsuda, R. D. Mehta, A. D. Weir and P. Bradshaw, Effect of free-stream turbulence on large structure in turbulent mixing layers. J. Fluid Mech. 85 (1978) 693–704.

    Google Scholar 

  33. F. K. Browand and T. R. Troutt, A note on spanwise structure in the two-dimensional mixing layer. J. Fluid Mech. 93 (1980) 325–336.

    Google Scholar 

  34. I. Orlanski, A simple boundary condition for unbounded hyperbolic flows, J. Comp. Phys. 21 (1976) 251–269.

    Google Scholar 

  35. U. Piomelli, High Reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids A 5 (1993) 1484–1490.

    Google Scholar 

  36. R. A. Antonia, M. Teitel, J. Kim, and L. W. B. Browne, Low-Reynolds-number effects in a fully developed turbulent channel flow. J. Fluid Mech. 236 (1992) 579–605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesieur, M., Comte, P., Lamballais, E. et al. Large-Eddy Simulations of Shear Flows. Journal of Engineering Mathematics 32, 195–215 (1997). https://doi.org/10.1023/A:1004228831518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004228831518

Navigation