Skip to main content
Log in

Modelling root growth of wheat as the linkage between crop and soil

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The simulation of crop - soil systems with a model requires an appropriate description of the root dynamics. An empirical root growth model that simulates root-shoot relations, root distribution and a dynamic response to environmental conditions is presented. The root model extends an existing crop model and links it to a soil model to calculate dry matter accumulation, water and nitrogen dynamics of a wheat crop. Simulated roots are distributed over soil layers according to carbon supply from the shoots by using a 'top down principle'. This principle favours the top layers for root growth by first providing all available carbon to the first layer. Under unfavourable soil conditions in that layer, carbon is given to the next deeper soil layer. This procedure is repeated until a separately calculated rooting depth is reached. At that depth all available carbon is used for root growth regardless of current soil conditions. Under most simulated conditions the 'top down principle ' results in a negative exponential function of a monotone decrease of root distribution with soil depth. However, it can also account for larger root densities deeper in the profile when water or nitrogen deficiency occurs in soil. In addition to soil water and soil nitrogen supply the root model considers soil compaction, aeration and root distribution history for root growth simulation. The new model, consisting of an existing crop and soil model and linked through a new developed root model, was calibrated and tested using two independent field experiments. A sensitivity analysis was carried out by varying parameters, initial soil conditions and hypothetic weather patterns as part of the validation process. Root length density distribution (r2(1:1)=0.65), shoot, grain and total root biomass (r2(1:1)=0.87) were predicted satisfactorily, thus providing a useful tool for specific simulation studies on that site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adiku S G K, Braddock R D and Rose C W 1995 Simulating root growth dynamics of cowpea under varying soil conditions. InProceedings of MODSIM95, The International Congress on Modelling and Simulation, The University of Newcastle, 27-30 November 1995, Newcastle, Australia.

  • Andrew S P S 1987 A mathematical model of root exploration and of grain fill with partilar reference to winter wheat. Fert. Res. 11, 267-281.

    Google Scholar 

  • Augustin J 1980 Neue Erkenntnisse ueber Wurzelausscheidungen unter besonderer Beruecksichtigung ihrer Auswirkungen auf die Phosphataufnahme der Pflanze. Diplomarbeit, MLU Halle, Germany.

    Google Scholar 

  • Barraclough P B 1986 The growth and activity of winter wheat roots in the field: Nutrient uptakes of high-yielding crops. J. Agric. Sci. 106, 45-52.

    Google Scholar 

  • Borg H and Grimes DW 1986 Depth development of rootswith time: An empirical description. Am. Soc. Agric. Eng. 29, 194-197.

    Google Scholar 

  • Brouwer R 1962 Nutritive influences on the distribution of dry-matter in the plant. Neth. J. Agric. Sci. 10, 399-408.

    Google Scholar 

  • Brouwer R 1983 Functional equilibrium: sense or nonsense? Neth. J. Agric. Sci. 31, 335-348.

    Google Scholar 

  • Chapman S C, Hammer G L and Meinke H 1993 A sunflower simulation Model: I. Model Development. Agron. J. 85, 725-735.

    Google Scholar 

  • Clausnitzer V and Hopmans J W 1994 Simultaneus modeling of transient three-dimensional root growth and soil water flow. Plant Soil 164, 299-314.

    Google Scholar 

  • Denison R F and Loomis R S 1989 An integrative physiological model of alfalfa growth and development. Div. of Agricultural and Natural Resources, Oaklands. 73p.

    Google Scholar 

  • Diggle A J 1988 ROOTMAP-a model in three-dimensional coordinates of the growth and structure of fibrous root systems. Plant Soil 105, 169-178.

    Google Scholar 

  • Gerwitz A and Page E R 1974 An empirical mathematical model to describe plant root systems. J. Appl. Ecol. 11, 773-783.

    Google Scholar 

  • Gliemeroth G 1953 Bearbeitung und Duengung des Unterbodens in ihrer Wirkung auf Wurzelentwicklung, Stoffaufnahme und Pflanzenleistung. Z. Acker-Pflanzenbau, 96, 1-44.

    Google Scholar 

  • Glinski J and Lipiec J 1990 Soil physical condition and plant roots. CRC Press Inc. Boca Raton, FL. 249 p.

    Google Scholar 

  • Grant R F 1993 Simulation model of soil compaction and root growth. I. Model structure. Plant Soil 150, 1-14.

    Google Scholar 

  • Gregory P J, McGowan M, Biscoe P V and Hunter B 1978 Water relations of winter wheat. I. Growth of the root system. Agric. Sci. 91, 91-102.

    Google Scholar 

  • Groot J J R 1987 Simulation of nitrogen balance in a system of winter wheat and soil. Simulation Report CABO-TT, No 13, Agricultural University, Wageningen.

    Google Scholar 

  • Hansen G K 1975 A dynamic continuous simulation model of water state and transpiration in the soil-plant-atmosphere system. I. The model and its sensitivity. Acta Agric. Scand. 25, 129-149.

    Google Scholar 

  • Hoogenboom G and Huck MG 1986 ROOTSSIMU V4.0A Dynamic Simulation of Root Growth, Water Uptake, and Biomass Partitioning in a Soil-Plant-Atmosphere Continuum: Update and Documentation. Agronomy and Soils Departmental Series No. 109, Auburn University, Alabama.

    Google Scholar 

  • Hoogenboom G, Huck M G and Hillel D 1987 Modification and testing of a model simulating root and shoot growth as related to soil water dynamics. Adv. Irrig. 4, 331-387.

    Google Scholar 

  • Huck M G and Hillel D 1983 A model of root growth and water uptake accounting for photosynthesis, respiration, transpiration, and soil hydraulics. Adv. Irrig. 2, 273-333.

    Google Scholar 

  • Johnson I R and Thornley J H M 1985 Dynamic modelling of the response of a vegetative grass crop to light, temperature and nitrogen. Plant Cell Environ. 8, 485-499.

    Google Scholar 

  • Jones C A and Kiniry J R (eds) 1986 CERES-Maize: A simulation model of maize growth and development. Texas A and M Univ. Press, College Station, TX.

    Google Scholar 

  • Jones C A, Bland W L, Ritchie J T and Williams J R 1991 Simulation of root growth. Modeling plant and soil systems. Agron. Monogr. 31, 91–123.

    Google Scholar 

  • Kartschall T 1986 Simulationsmodell der Bodenstickstoffdynamik. Diss., Berlin.

  • Kartschall T, Matthaeus E and Asseng S 1990 Simulation experiments with the agroecosystem model DEMETER using SONCHES. Syst. Anal. Model. Simul. 7, 429-438.

    Google Scholar 

  • Klepper B 1990 Root growth and water uptake. InModeling plant and soil systems. AgronomyMonograph 31. pp 281-322. ASA, CSSA, SSSA Madison, WI.

    Google Scholar 

  • Klepper B 1991 Crop root system response to irrigation. Irrig. Sci. 12, 105-108.

    Google Scholar 

  • Klepper B and Rickman R W 1990 Modeling crop root growth and function. Adv. Agron. 44, 113-132.

    Google Scholar 

  • Kretschmer H 1989 Ergebnisse zur potentiellen Stickstoffaufnahme beiWinterweizen. Arch. Acker-Pflanzenbau Bodenkd. 33, 231- 238.

    Google Scholar 

  • Lungley D R 1973 The growth of root systems-a numerical computer simulation model. Plant Soil 38, 145-159.

    Google Scholar 

  • Matthaeus E, Mirschel W, Kretschmer H, Kuenkel K and Klank I 1986 The Winter wheat crop model TRITSIM of the agroecosystem AGROSIM-W. InComputer-aided modelling and simulation of the winter wheat agroecosystem (AGROSIM-W) for integrated pest management. Tagungsbericht AdL 242, 43-74.

    Google Scholar 

  • Mirschel W, Klang I, Kretschmer H and Kuenkel H 1987 Dynamisches Ertragsbildungs-und Entwicklungsmodell TRITSIM für Winterweizen. 2. Mitteilung: Modellvalidierung und-verifizierung. Arch. Acker-Pflanzenbau Bodenkd. 31, 259-267.

    Google Scholar 

  • Mirschel W, Matthaeus E and Kretschmer H 1989 Stand und Nutzungsmoeglichkeiten desWeizenmodells TRITSIM. Agrarinformatik 16, 231-246.

    Google Scholar 

  • Mirschel W, Kretschmer K and Matthaeus E 1990 Dynamisches Modell zur Abschaetzung der Ontogenese von Winterweizen unter Beruecksichtigung des Wasser-und Stickstoffversorgungzustandes. Arch. Acker-Pflanzenbau Bodenkd. 34, 691-699.

    Google Scholar 

  • Monteith J L, Huda A K S and Midya D 1989 RESCAP: A resource model for sorghum and pearl millet. InModelling the Growth and Development of Sorghum and Pearl Millet. Eds. S M Virmani, H L S Tandon and G Alagarswarmy. Res. Bull. 12, pp 30-34. ICRISAT, Patanchera.

  • O'Leary G J, Connor D J and White D 1985 A simulation model of the development, growth and yield of the wheat crop. Agric. Syst. 17, 1-26.

    Google Scholar 

  • Pages L, Jordan M O and Picard D 1989 A simulation model of the three-dimensional architecture of the maize root system. Plant Soil 119, 147-154.

    Google Scholar 

  • Penning de Vries FWT, Jansen D M, ten Berge H FM and Bakema A 1989 Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs 29. Pudoc, Wageningen. 271 p.

    Google Scholar 

  • Pfeil v E, Hundertmark W, Thies F D and Widmoser P 1992 Calibration of the simulation model “Ceres Wheat” under conditions of soils with shallow watertable and temperate climate. Part 1: Limitations in the applicability of the original model and necessary modifications. Z. Pflanzenernaehr. Bodenkd. 155, 323-326.

    Google Scholar 

  • Porter J R, Klepper B and Belford R K 1986 A model (WHTROOT) which synchronises root growth and development with shoot development for winter wheat. Plant Soil 92, 133-145.

    Google Scholar 

  • Reynolds J F and Thornley J H M 1982 A Shoot:Root Partitioning Model. Ann. Bot. 49, 585-597.

    Google Scholar 

  • Ritchie J T, Godwin DC and Otter S 1985 CERES-Wheat: Auser oriented wheat yield model. Preliminary documentation. AGRISTARS Publication YM-U3-04442-JSC-18892. Michigan State University, MI. 252 p.

    Google Scholar 

  • Robertson M J, Fukai S, Hammer G L and Ludlow M M 1993 Modelling root growth of grain sorghum using the CERES approach. Field Crops Res. 33, 113-130.

    Google Scholar 

  • Rose D A 1983 The description of the growth of root systems. Plant Soil 75, 405-415.

    Google Scholar 

  • Roth D, Krumbiegel D and Weise K 1980 Nomogramme zur Abschaetzung des Zusatzregenbedarfs fuer die Beregnung aus der klimatischen Wasserbilanz und dem pflanzenverfuegbaren Bodenfeuchtevorrat bei unterschiedlicher Sicherheit in der Wasserbereitstellung. Arch. Acker-Pflanzenb. 24, 105-122

    Google Scholar 

  • Spek L Y and van Oijen M 1988 A simulation model of root and shoot growth at different levels of nitrogen availability. Plant Soil 111, 191-197.

    Google Scholar 

  • Stapper M 1984 SIMTAG: A Simulation Model of Wheat Genotypes. Model Documentation. Univ. of New England, Armidale. 108 p.

    Google Scholar 

  • Swinnen J 1994 Rhizodeposition and turnover of root-derived organic material in barley and wheat under conventional and integrated management. Agric. Ecosyst. Environ. 51, 115-128.

    Google Scholar 

  • Swinnen J, Van Veen J A and Merckx R 1995 Root decay and turnover of rhizodeposits in field-grown winter wheat and spring barley estimated by 14C pulse-labelling. Soil Biol. Biochem. 22, 211-217.

    Google Scholar 

  • Van Keulen H and Seligman N G 1987 Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monograph. Pudoc, Wageningen. 310 p.

    Google Scholar 

  • Wenzel V, Matthaeus E and Flechsig M 1985 SONCHES-Nutzerdokumentation. Dokumentation. Zentralinstitut fuer Kybernetik und Informationsprozesse, Berlin. 326 p.

  • Wessolek G 1993 Einfluss von Klimaaenderungen auf den Bodenwasserhaushalt (regionale Fallstudien). Mitt. Dtsch. Bodenkd. Ges. 69, 289-293.

    Google Scholar 

  • Wiedenroth E A 1988 Zur Reaktion hoeherer Pflanzen auf Sauerstoffmangel. Colloq. Pflanzenphysiol. Humboldt-Univ. Berlin 12, 11-26.

    Google Scholar 

  • Williams J R, Jones C A and Dyke P T 1984 The EPIC Model and its Application. Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer, 21-26 March, 1983. pp 111-121.

  • Yamaguchi J and Tanaka A 1990 Quantitative observation on the root system of various crops growing in the field. Soil Sci. Plant Nutr. 36, 483-493.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asseng, S., Richter, C. & Wessolek, G. Modelling root growth of wheat as the linkage between crop and soil. Plant and Soil 190, 267–277 (1997). https://doi.org/10.1023/A:1004228201299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004228201299

Navigation