Skip to main content
Log in

Influence of acid rain and liming on fluxes of NO and NO2 from forest soil

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Flux measurements of nitric oxide (NO) and nitrogen dioxide (NO2) were performed in a coniferous forest (Höglwald) in southern Germany using a fully automated measuring system based on the dynamic chamber method. The forest soil was predominately a source of NO, but mean flux rates of NO ranged from −26.3 (deposition) to 55 μg N m-2 h-1 (emission). NO2 was deposited on the forest soil with mean flux rates ranging from −4 to −72 μg N m-2 h-1 . Removal of forest floor vegetation did not influence NO or NO2 fluxes. Apparently, forest floor vegetation was neither a source of NO nor a significant sink of NO2. When the organic layer of the forest soil was removed, net NO flux changed from emission to deposition. Thus NO emitted to the atmosphere was produced almost exclusively in the organic layer of the forest soil. Liming caused a significant decrease in the rate of NO emission by 43 to 100%, whereas irrigation with simulated acid rain increased the emission of NO by a factor of 3.1. Irrigation with simulated “normal” rain decreased the emission of NO by 35 to 100%. No such effects could be detected for the deposition of NO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bååth E, Lundgren B and Söderstrm B 1979 Effects of artificial acid rain on microbial activity and biomass. Bull. Environ. Contam. Toxicol. 23, 737–740.

    PubMed  Google Scholar 

  • Bååth E and Arnebrant K 1994 Growth rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil Biol. Biochem. 26, 995–1001.

    Article  Google Scholar 

  • Brumme R and Beese F 1992 Effects of liming and nitrogen fertilization on emissions of CO2 and N2O from a temperate forest. J. Geophys. Res. 97D, 12851–12858.

    Google Scholar 

  • Cárdenas L, Rondón A, Johansson C and Sanhueza E 1993 Effects of soil moisture, temperature, and inorganic nitrogen on nitric oxide emissions from acidic tropical savannah soils. J. Geophys. Res. 98D, 14783–14790.

    Google Scholar 

  • Crutzen P J 1979 The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu. Rev. Earth Planet. Sci. 7, 443–472.

    Google Scholar 

  • Davidson E A 1991 Fluxes of nitrous oxides and nitric oxide from terrestrial ecosystems. In Microbial production and consumption of greenhouse gases: methan, nitrogen oxides and halomethans. Eds. J E Rogers and W B Whitman. pp 219–235. Am. Soc. Microbiology, Washington, DC.

    Google Scholar 

  • Frostegård, Bååth E and Tunlid A 1993 Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fitty acid alysis. Soil. Biol. Biochem. 25, 723–730.

    Google Scholar 

  • Hanson P J and Lindberg S E 1991 Dry deposition of reactive nitrogen compounds: a review of leaf, canopy and non-foliar measurements. Atmos. Environ. 25A, 1615–1634.

    Google Scholar 

  • Kreutzer K 1995 Effects of forest liming on soil processes. Plant Soil 168–169, 447–470.

    Google Scholar 

  • Kreutzer K and Bittersohl J 1986 Untersuchungen über die Auswirkungen des sauren Regens und der kompensatorischen Kalkung im Wald. Forstwiss. Centralbl. 105, 273–282.

    Google Scholar 

  • Kreutzer K and Weiss T 1998 The Höglwald field experiments-aims, concept and basic data. Plant Soil 199, 1–10.

    Google Scholar 

  • Kreutzer K and Zelles L 1986 Die Auswirkungen von saurer Beregnung und Kalkung auf die mikrobielle Aktivität im Boden. Forstwiss. Centralbl. 105, 314–317.

    Google Scholar 

  • Kreutzer K, Göttlein A and Pröbstle P 1991a Auswirkungen von saurer Beregnung auf den Bodenchemismus in einem Fichtenaltbestand (Picea abies [L.] Karst.). Forstwiss. Forsch. 39, 174–186.

    Google Scholar 

  • Kreutzer K, Göttlein A and Pröbstle P 1991b Dynamik und chemische Auswirkungen der Auflösung von Dolomitkalk unter Fichte (Picea abies [L.] Karst.). Forstwiss. Forsch. 39, 186–204.

    Google Scholar 

  • Kreutzer K, Göttlein A, Pröbstle P and Zuleger M 1991c Höglwaldforschung 1982–1985. Zielsetzung, Versuchskonzept, Basisdaten. Forstwiss. Forsch. 39, 11–21.

    Google Scholar 

  • Martikainen P J 1985 Nitrous oxide emissions associated with autotrophic ammonium oxidation an acid coniferous forest soil. Appl. Environ. Micobiol. 50, 1519–1525.

    Google Scholar 

  • Nägele W and Conrad R 1990 Influence of soil pH on nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N2O. FEMS Microbiol. Ecol. 74., 49–58.

    Google Scholar 

  • Nodar R, Acea M J and Carballas T 1992 Microbial response to Ca(OH)2 treatment in a forest soil. FEMS Microbiol. Ecol. 86, 213–219.

    Google Scholar 

  • Nyborg M and Hoy P B 1978 Effects of soil acidity and liming on mineralization of soil nitrogen. Can. J. Soil Sci. 58, 331–338.

    Google Scholar 

  • Papen H and von Berg R 1998 A Most Probable Number method (MPN) for the estimation of cell numbers of heterotrophic nitrifying bacteria in soil. Plant Soil 199, 123–130.

    Google Scholar 

  • Papen H, von Berg R, Hinkel I, Thoene B and Rennenberg H 1989 Heterotrophic nitrification by Alcaligenes faecalis: NO 2 , NO 3 , N2O, and NO production in exponentially growing cultures. Appl. Environ. Microbiol. 55, 2068–2072.

    PubMed  Google Scholar 

  • Papen H, von Berg R, Hellmamn B and Rennenberg H 1991 Einfluß von saurer Beregnung und Kalkung auf chemolithotrophe und heterotrophe Nitrifikation in Böden des Höglwaldes. Forstwiss. Forsch. 39, 111–116.

    Google Scholar 

  • Papen H, Hellmann B, Papke H and Rennenberg H 1993 Emission of N-oxides from acid irrigated and limed soils of a coniferous forest in Bavaria. In The Biogeochemisty of Global Change: Radiatively Active Trace Gases. Ed. R S Oremland. pp 245–259. Chapman and Hall, New York.

    Google Scholar 

  • Remde A and Conrad R 1990 Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite. Arch. Microbiol. 154, 187–191.

    Google Scholar 

  • Remde A and Conrad R 1991 Role of nitrification and denitrification for NO metabolism in soil. Biogeochemistry 12, 189–205.

    Google Scholar 

  • Robertson G P 1993 Fluxes of nitrous oxide and other nitrogen trace gases from intensively managed landscapes: a global perspective. In Agricultural Eosystem Effects on trace Gases and Global Climate Change. ASA Special Publication no 55. pp 95–108. Am. Soc. Agronomy. Crop Sci. Soc. Am., Soil Sci. Soc. Am., Madison, WI.

    Google Scholar 

  • Shah Z, Adams W A and Haven C D V 1990 Composition and activity of the microbial population in an acidic upland soil and effect of liming. Soil Biol. Biochem. 22, 257–263.

    Google Scholar 

  • Shepherd M F, Barzetti S and Hastie D R 1991 The production of atmospheric NOx and N2O from a fertilized agricultural soil. Atmos. Environ. 25A, 1961–1969.

    Google Scholar 

  • Slemr F and Seiler W 1984 Field measurements of NO and NO2 emissions from fertilized and unfertilized soils. J. Atmos. Chem. 2, 1–24.

    Google Scholar 

  • Slemr F and Seiler W 1991 Field study of environmental variables controlling the NO emissions from soil and the NO compensation point. J. Geophys. Res. 96D, 13017–13031.

    Google Scholar 

  • Williams E J and Fehsenfeld F C 1991 Measurements of soil nitrogen oxide emissions at three north american ecosystems. J. Geophys. Res. 96D, 1033–1042.

    Google Scholar 

  • Williams E J, Hutchinson G L, and Fehsenfeld F C 1992 NOx and N2O emissions from soil. Global Biogeochem. Cycles 6, 351–388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papke, H., Papen, H. Influence of acid rain and liming on fluxes of NO and NO2 from forest soil. Plant and Soil 199, 131–139 (1998). https://doi.org/10.1023/A:1004215421496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004215421496

Navigation