Skip to main content
Log in

Concerning closed-streamline flows with discontinuous boundary conditions

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

High-Reynolds-number (Re) flow containing closed streamlines (Prandtl-Batchelor flows), within a region enclosed by a smooth boundary at which the boundary conditions are discontinuous, is considered. In spite of the need for local analysis to account fully for flow at points of discontinuity, asymptotic analysis for Re ≪ 1 indicates that the resulting mathematical problem for determining the uniform vorticity ω0) in these situations, requiring the solution of periodic boundary-layer equations, is in essence the same as that for a flow with continuous boundary data. Extensions are proposed to earlier work [3] to enable ω0 to be computed numerically; these require coordinate transformations for the boundary-layer variables at singularities, as well as a two-zone numerical integration scheme. The ideas are demonstrated numerically for the classical circular sleeve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech.1 (1956) 177-190.

    Google Scholar 

  2. N. Riley, High Reynolds number flows with closed streamlines. J. Eng. Math.15 (1981) 15-27.

    Google Scholar 

  3. M. Vynnycky, On the uniform vorticity in a high Reynolds number flow. J. Eng. Math.28 (1994) 129-144.

    Google Scholar 

  4. E. W. Haddon and N. Riley, On flows with closed streamlines. J. Eng. Math.19 (1985) 233-246.

    Google Scholar 

  5. W. H. Lyne, Unsteady viscous flow in a curved pipe. J. Fluid Mech.45 (1970) 13-31.

    Google Scholar 

  6. S. I. Chernyshenko, An approximate method of determining the vorticity in the separation region as the viscosity tends to zero. Fluid Dyn.17 (1982) 1-11.

    Google Scholar 

  7. S. I. Chernyshenko, The calculation of separated flows of low viscosity liquids using the Batchelor model. Library translation 2133, RAE (1985).

  8. S. I. Chernyshenko, The asymptotic form of the steady separated flow past a body at large Reynolds number. Appl. Math. Mech.52 (1988) 746-753.

    Google Scholar 

  9. S. I. Chernyshenko and I. P. Castro, High Reynolds-number asymptotics of the steady flow through a row of bluff bodies. J. Fluid Mech.257 (1996) 421-449.

    Google Scholar 

  10. S. I. Chernyshenko and I. P. Castro, High Reynolds-number weakly stratified flow past an obstacle. J. Fluid Mech.317 (1996) 155-178.

    Google Scholar 

  11. F. T. Smith, A structure for laminar flow pasta bluff body at high Reynolds number. J. Fluid Mech.155 (1985) 175-191.

    Google Scholar 

  12. D. H. Peregrine, A note on the steady high Reynolds-number flow about a circular cylinder. J. Fluid Mech. 157 (1985) 493-500.

    Google Scholar 

  13. F. T. Smith, Concerning inviscid solutions for large-scale separated flows. J. Eng. Math.20 (1986) 271-292.

    Google Scholar 

  14. R. McLachlan, A steady separated viscous corner flow, J. Fluid Mech.231 (1991) 1-34.

    Google Scholar 

  15. G. Giannakidis, Prandtl-Batchelor flow in a channel. Phys. Fluids A5 (1993) 863-867.

    Google Scholar 

  16. C. Turfus, Prandtl-Batchelor flow past a flat plate at normal incidence in a channel - inviscid analysis. J. Fluid Mech.249 (1993) 59-72.

    Google Scholar 

  17. G. Giannakidis, Prandtl-Batchelor flow on a circular cylinder and on aerofoil sections. Aeronaut. J.100 (1996) 15-26.

    Google Scholar 

  18. M. Vynnycky and K. Kanev, Coupled Batchelor flows in a confined cavity. J. Fluid Mech.319 (1996) 305-322.

    Google Scholar 

  19. A. V. Bunyakin, S. I. Chernyshenko and G.Y. Stepanov, Inviscid Batchelor-model flow past an airfoil with a vortex trapped in a cavity. J. Fluid Mech.323 (1996) 367-376.

    Google Scholar 

  20. S. Goldstein, Concerning some solutions of the boundary-layer equations in hydrodynamics. Proc. Camb. Phil. Soc.26 (1930) 1-30.

    Google Scholar 

  21. A. J. Van de Vooren and D. Djikstra, The Navier-Stokes solution for laminar flow past a semi-infinite plate. J. Eng. Math.4 (1970) 9-27.

    Google Scholar 

  22. F. T. Smith, Boundary-layer flow near a discontinuity in wall conditions. J. Inst. Maths and its Applics.13 (1974) 127-145.

    Google Scholar 

  23. A. E. P. Veldman, A new calculation of the wake of a plate. J. Eng. Math.9 (1975) 65-70.

    Google Scholar 

  24. T. Cebeci, F. Thiele, P. G. Williams and K. Stewartson, On the calculation of symmetric wakes I. Two-dimensional flows. Num. Heat Transf.2 (1979) 35-60.

    Google Scholar 

  25. T. Cebeci and P. Bradshaw, Momentum Transfer in Boundary Layers. Washington: Hemisphere Publishing Corporation (1977) 391pp.

    Google Scholar 

  26. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press (1989) 818pp.

    Google Scholar 

  27. E.W. Haddon and N. Riley, A note on the mean circulation in standing waves. Wave Motion5 (1983) 43-48.

    Google Scholar 

  28. D. W. Moore, P. G. Saffman and S. Tanveer, The calculation of some Batchelor flows: The Sadovskii vortex and rotational corner flow. Phys. Fluids31 (1988) 978-990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vynnycky, M. Concerning closed-streamline flows with discontinuous boundary conditions. Journal of Engineering Mathematics 33, 141–156 (1998). https://doi.org/10.1023/A:1004204527294

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004204527294

Navigation