Skip to main content
Log in

Glider and Vision: Two New Families of Miniature Inverted-Repeat Transposable Elements in Xenopus Laevis Genome

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We have characterised from Xenopus laevis two new short interspersed repetitive elements, we have named Glider and Vision, that belong to the family of miniature inverted-repeat transposable elements (MITEs). Glider was first characterised in an intronic region of the α-tropomyosin (α-TM) gene and database search has revealed the presence of this element in 10 other Xenopus laevis genes. Glider elements are about 150 bp long and for some of them, their terminal inverted repeats are flanked by potential target-site duplications. Evidence for the mobility of Glider element has been provided by the presence/absence of one element at corresponding location in duplicated α-TM genes. Vision element has been identified in the promoter region of the cyclin dependant kinase 2 gene (cdk2) where it is boxed in a Glider element. Vision is 284 bp long and is framed by 14-bp terminal inverted repeats that are flanked by 7-bp direct repeats. We have estimated that there are about 20,000 and 300 copies of Glider and Vision respectively scattered throughout the laevis genome. Every MITEs elements but two described in our study are found either in 5′ or in 3′ regulatory regions of genes suggesting a potential role in gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D.J. Lipman, 1997. Gapped Blast and PSI-Blast: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Bisbee, C.A., M.A. Baker, A.C. Wilson, I. Haji-Azimi & M. Fischberg, 1977. Albumin phylogeny for clawed frogs (Xenopus). Science 195: 785–787.

    PubMed  CAS  Google Scholar 

  • Britten, R.J., 1996. DNA sequence insertion and evolutionary variation in gene regulation. Proc. Natl. Acad. Sci. USA 93: 9374–9377.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E. & S.R. Wessler, 1992. Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283–1294.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E. & S.R. Wessler, 1994a. Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907–916.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E. & S.R. Wessler, 1994b. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc. Natl. Acad. Sci. USA 91: 1411–1415.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E., P.C. Ronald & S.R. Wessler, 1996. A computer-based systematic survey reveals the predominance of small invertedrepeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. USA 93: 8524–8529.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, D.J., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, C., N. Thézé, H. Lerivray, S. Hardy, D. Lepetit & P. Thiébaud, 1998a. A novel tropomyosin isoform encoded by the Xenopus laevis α-TM gene is expressed in the brain. Gene 207: 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, C., N. Thézé, S. Hardy, M.R. Allo, E. Ferrasson & P. Thiébaud, 1998b. α tropomyosin gene expression in Xenopus laevis: Differential promoter usage and controlled expression by myogenic factors. Dev. Genes Evol. 207: 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, C., H. Lerivray, N. Thézé, B. Cooper, D. Lepetit, T. Mohun & P. Thiébaud, 1999. Differential expression of two skeletal muscle beta-tropomyosin mRNAs during Xenopus laevis development. Int. J. Dev. Biol. 43: 175–178.

    PubMed  CAS  Google Scholar 

  • Graf, J.D. & H.R. Kobel, 1991. Genetics of Xenopus laevis. Meth. Cell Biol. 36: 19–34.

    Article  CAS  Google Scholar 

  • Hardy, S. & P. Thiébaud, 1992. Isolation and characterization of cDNA clones encoding the skeletal and smooth muscle Xenopus laevis α tropomyosin isoforms. Biochim. Biophys. Acta 1131: 239–242.

    PubMed  CAS  Google Scholar 

  • Hardy, S., M. Fiszman, H.B. Osborne & P. Thiébaud, 1991. Characterization of muscle and non muscle Xenopus laevis tropomyosin mRNAs transcribed from the same gene. Eur. J. Biochem. 202: 431–440.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, S., N. Thézé, D. Lepetit, M.R. Allo & P. Thiébaud, 1995. The Xenopus laevis TM-4 gene encodes non muscle and cardiac tropomyosin isoforms through alternative splicing. Gene 156: 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff, S., E.A. Greene, S. Pietrokovski, P. Bork, T.K. Attwood & L. Hood, 1997. Gene families: the taxonomy of protein paralogs and chimeras. Science 278: 609–614.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, D.G. & S.M. Sharp, 1988. Clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Izsvák, Z., Z. Ivics, N. Shimoda, D. Mohn, H. Okamoto & P.B. Hackett, 1999. Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J. Mol. Evol. 48: 13–21.

    Article  PubMed  Google Scholar 

  • Kafatos, F.C., C.W. Jones & A. Efstratiadis, 1979. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 7: 1541–1552.

    PubMed  CAS  Google Scholar 

  • Kay, B.K. & I.B. Dawid, 1983. The 1723 element: a long, homogeneous, highly repeated DNA unit interspersed in the genome of Xenopus laevis. J. Mol. Biol. 170: 583–596.

    Article  PubMed  CAS  Google Scholar 

  • Kidwell, M.G. & D. Lisch, 1997. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94: 7704–7711.

    Article  PubMed  CAS  Google Scholar 

  • Kobel, H.R. & L. Du Pasquier, 1986. Genetic of polyploid Xenopus. Trends Genet. 2: 310–315.

    Article  Google Scholar 

  • Lees-Miller, J.P., L.O. Goodwin & D.M. Helfman, 1990. Three novel brain tropomyosin isoforms are expressed from the rat alpha-tropomyosin gene through the use of alternative promoters and alternative RNA processing. Mol. Cell. Biol. 10: 1729–1742.

    PubMed  CAS  Google Scholar 

  • Lemonnier, M., L. Balvay, V. Mouly, D. Libri & M. Fiszman, 1991. The chicken gene encoding the alpha isoform of tropomyosin of fast-twitch muscle fibers: organization, expression and identification of the major proteins synthesized. Gene 107: 229–240.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M.A. & A.J. Matzke, 1998. Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell. Mol. Life Sci. 54: 94–103.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, G.T. & K.M. Middleton, 1990. Short interspersed repeats from Xenopus that contain multiple octamer motifs are related to known transposable elements. Nucleic Acids Res. 18: 5781–5786.

    PubMed  CAS  Google Scholar 

  • Olive, M., N. Thézé, M. Philippe, J.P. Le Pennec & H. Lerivray, 1994. Cloning of the Xenopus laevis cdk2 promoter and functional analysis in oocytes and during early development. Gene 151: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Pozueta-Romero, J., G. Houlne & R. Schantz, 1996. Nonautonomous inverted repeat Alien transposable elements are associated with genes of both monocotyledonous and dicotyledonous plants. Gene 171: 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanger, F., S. Nicklen & A.R. Coulson, 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Smit, A.F. & A.D. Riggs, 1996. Tiggers and DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  • Tu, Z., 1997. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 94: 7475–7480.

    Article  PubMed  CAS  Google Scholar 

  • Ñnsal, K. & G.T. Morgan, 1995. Novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition of inverted-repeat SINEs. J. Mol. Biol. 248: 812–823.

    Article  Google Scholar 

  • Wessler, S.R., T.E. Bureau & S.E. White, 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5: 814–821.

    Article  PubMed  CAS  Google Scholar 

  • White, S.E., L.F. Habera & S.R. Wessler, 1994. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci. USA 91: 11792–11796.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepetit, D., Pasquet, S., Olive, M. et al. Glider and Vision: Two New Families of Miniature Inverted-Repeat Transposable Elements in Xenopus Laevis Genome. Genetica 108, 163–169 (2000). https://doi.org/10.1023/A:1004173315419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004173315419

Navigation