Inorganic Materials

, Volume 37, Issue 2, pp 93–98 | Cite as

Microwave Absorbing Materials

  • V. M. Petrov
  • V. V. Gagulin


Available data on microwave absorbing materials finding engineering applications or potentially attractive for use in dielectric, magnetic, and ferroelectric–seignettomagnetic absorbers are summarized.


Microwave Inorganic Chemistry Engineering Application Absorb Material Microwave Absorb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kovneristyi, Yu.K., Lazareva, I.Yu., and Ravaev, A.A., Materialy, pogloshchayushchie SVCh-izluchenie (Microwave-Absorbing Materials), Moscow: Nauka, 1982.Google Scholar
  2. 2.
    Petrov, V.M., Microwave Dielectric Properties of Ferroelectrics, in Segnetomagnitnye veshchestva (Magnetoelectric Materials), Moscow: Nauka, 1990, pp. 152–164.Google Scholar
  3. 3.
    Suetake, K. and Naito, Yo, USA Patent 3737903, 1973.Google Scholar
  4. 4.
    Wright, R.W., USA Patent 4012738, 1977.Google Scholar
  5. 5.
    Tino, M. and Hasegawa, T., Microwave-Absorbing Coatings: 2. Prototype Design of Thin-Film Broadband 3-cm Absorber, Boei Daigakko Rikogaku Kenku Hokoku, 1976, vol. 14, no. 1/2 pp. 21–34.Google Scholar
  6. 6.
    Petrov, V.M., Mirovitskii, D.I., and Dobrovenskii, V.V., USSR Inventor's Certificate no. 1447179, 1986.Google Scholar
  7. 7.
    Roy, N., Berechnung und Messung von dunnen Einschicht-und Zweischichtabsorben fur elektromagnetische Wellen im Frequenzbereich von 4-200 MHz, Z. Angew. Phys., 1965, vol 19, no. 4, pp. 303–310.Google Scholar
  8. 8.
    Naito, E., Suetake, K., Matsumura, H., and Fuziwara, E., Matching Frequencies of Ferrite-Based Microwave Absorbers, Densi Tsusin Gakkai Rombunsi, 1969, vol. 52B, no. 7, pp. 398–404.Google Scholar
  9. 9.
    Amin, M.B. and James, J.R., Techniques for Utilization of Hexagonal Ferrites in Radar Absorbers, Radio Electron. Eng., 1981, vol. 51, no. 5, pp. 209–225.Google Scholar
  10. 10.
    Kunihiro, S., USA Patent 3623099, 1970.Google Scholar
  11. 11.
    Mottahed, B.D. and Manoochehri, S., A Review of Research in Materials, Modeling and Simulation, Design Factors, Testing and Measurements Related to Electromagnetic Interference Shielding, Polym.-Plast. Technol. Eng., 1995, vol. 34, no. 2, pp. 271–346.Google Scholar
  12. 12.
    Shneiderman, Ya.A., Microwave Absorbing Materials, Zarubezh. Radioelektron., 1975, no. 2, pp. 93–113; 1975, no. 3, pp. 71-92.Google Scholar
  13. 13.
    Pozdnyakov, L.V. and Selikhova, T.Yu., Energy Absorbers in Microwave Vacuum Devices, Obz. Elektron. Tekh., Ser. Elektron. SVCh, 1978, no. 3.Google Scholar
  14. 14.
    Galagan, S., Understanding Microwave Absorbing Materials and Anechoic Chambers, Microwaves, 1969, vol. 8, no. 12, pp. 38–41; 1970, vol. 9, no. 1, pp. 44-49.Google Scholar
  15. 15.
    Masaru Chino, Kazuo Kikuchi, and Taro Hasegawa, Design of Two-Layered Absorber Using Dielectrics, J. Inst. Telev. Eng. Jpn., 1977, vol. 31, no. 7, pp. 565–571.Google Scholar
  16. 16.
    Alayli, Y. and Djouaher, R., Influence of the Sorbed Atmospheric Humidity on the Microwave Conductivity of a Composite Material: Potential Applications in EMI Shielding and Absorbers, Meas. Sci. Technol., 1997, vol. 8, no. 9, pp. 793–797.Google Scholar
  17. 17.
    Nahmias, M.E., USA Patent 4030098, 1977.Google Scholar
  18. 18.
    Ishikawa Toshikatsu, Ichikawa Hiroshi, Imai Yoshikazu, et al., USA Patent 4507354, 1985.Google Scholar
  19. 19.
    UK Patent 2058469, 1981.Google Scholar
  20. 20.
    Jaggard, D.L. and Eugheta, N., USA Patent 5099242, 1992.Google Scholar
  21. 21.
    Dauwen, J.M.A., Timmerman, A.T., Van Craenendouck, M.A.C., and Pues, H.F., USA Patent 5229773, 1993.Google Scholar
  22. 22.
    Tsutaoka, T., Ueshima, M., Tokunaga, T., et al., Frequency Dispersion and Temperature Variation of Complex Permeability of Ni-Zn Ferrite Composite Materials, J. Appl. Phys., 1995, vol. 78, no. 6, pp. 3983–3991.Google Scholar
  23. 23.
    Wartenberg, B., Messung der elektromagnetischen Stoffkonstanten μ µund ɛ von Ferriten im mm-Wellengebiet, Z. Angew. Phys., 1968, vol. 24, no. 4, pp. 211–217.Google Scholar
  24. 24.
    Krupka, J. and Geyer, R.G., Complex Permeability of Demagnetized Microwave Ferrites near and above Gyromagnetic Resonance, IEEE Trans. Magn., 1996, vol. 32, part 2, no. 3, pp. 1924–1933.Google Scholar
  25. 25.
    Thomson, C.F., UK Patent 1367554, 1974.Google Scholar
  26. 26.
    Ken Ishino, Takashi Watanabe, and Yasuo Hashimoto, USA Patent 4003840, 1977.Google Scholar
  27. 27.
    Jpn. Patent 55-20614, 1980.Google Scholar
  28. 28.
    Naito, Yo, USA Patent 3720951, 1973.Google Scholar
  29. 29.
    Suetake, K., USA Patent 3460142, 1969.Google Scholar
  30. 30.
    Jpn. Patent 54-27556, 1979.Google Scholar
  31. 31.
    Meinke, H.H., Ulrich, K., and Wesch, L., USA Patent 3680107, 1972.Google Scholar
  32. 32.
    Jpn. Patent 54-18380, 1979.Google Scholar
  33. 33.
    Hatakeyama, K. and Inui, T., USA Patent 4538151, 1985.Google Scholar
  34. 34.
    UK Patent 1339791, 1973.Google Scholar
  35. 35.
    Dawson, M.H., Suffredini, L.R., and O'Neal, J.R., USA Patent 4173018, 1979.Google Scholar
  36. 36.
    Hatakeyama, K., USA Patent 5179381, 1993.Google Scholar
  37. 37.
    Naito, Yo, Mizumoto, T., and Takahashi, M., USA Patent 5296859, 1994.Google Scholar
  38. 38.
    Kim, K.Y., Kim, W.S., Jung, H.J., and Song, H.S., USA Patent 5323160, 1994.Google Scholar
  39. 39.
    Kim, K.Y., Kim, W.S., Jung, H.J., and Ju, Y.D., USA Patent 5446459, 1995.Google Scholar
  40. 40.
    Nakamura, K., Komori, H., Oda, M., and Kanda, K., USA Patent 5770304, 1998.Google Scholar
  41. 41.
    Baranov, S.A., Natural-Ferromagnetic-Resonance Microwire for Microwave-Absorbing Materials, Pis'ma Zh. Tekh. Fiz., 1998, vol. 24, no. 14, pp. 21–23.Google Scholar
  42. 42.
    Tyulyukovskii, E.V., Technology of Electromagnetic-Shielding Composites for Passive Electromagnetic Protection Systems, Vopr. Materialoved., 1998, no. 1(14), pp. 45–52.Google Scholar
  43. 43.
    Mirovitskii, D.I. and Petrov, V.M., Self-matched Absorption of Electromagnetic Waves by a Seignettomagnetodielectric Layer, Radiotekhnika, 1989, no. 3, pp. 60–62.Google Scholar
  44. 44.
    Venevtsev, Yu.N., Gagulin, V.V., and Lyubimov, V.N., Segnetomagnetiki (Seignettomagnets), Moscow: Nauka, 1982.Google Scholar
  45. 45.
    Wood, V.E. and Austin, A.E., Possible Applications for Magnetoelectric Materials, Magnetoelectric Interaction Phenomena in Crystals, Freeman, A.J. and Schmid, H., Eds., London: Gordon and Breach, 1975, pp. 181–193.Google Scholar
  46. 46.
    Shvorneva, L.I., Venevtsev, Yu.N., Petrov, V.M., and Zhdanov, G.S., USSR Inventor's Certificate no. 244172, Byull. Izobret., 1969, no. 17.Google Scholar
  47. 47.
    Gagulin, V.V., Fadeeva, N.V., Belous, A.G., et al., New Rhenium Containing Seignettomagnets and Ferroelectrics, Phys. Status Solidi A, 1978, vol. 44, no. 1, pp. 247–257.Google Scholar
  48. 48.
    Dobrovenskii, V.V., Zasovin, E.A., Mirovitskii, D.I., and Cherepanov, A.K., Microwave-Absorbing Composites with Absorbing-Grating Layers, Usp. Sovrem. Radioelektron., 2000, no. 2, pp. 61–66.Google Scholar
  49. 49.
    Bruzzone, C.L. and Hoyle, C.D., USA Patent 5925455, 1999.Google Scholar
  50. 50.
    Semenenko, V.N., Chistyaev, V.A., and Ryabov, D.E., Electrical Properties of Composites Containing Microwave Dielectric Resonator Inclusions, Preprint of Joint Inst. of High Temperatures, Russ. Acad. Sci., Moscow, 1999, no. 4-430.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2001

Authors and Affiliations

  • V. M. Petrov
    • 1
  • V. V. Gagulin
    • 1
  1. 1.Karpov Research Institute of Physical Chemistry (Russian State Scientific Center)MoscowRussia

Personalised recommendations