Skip to main content
Log in

Use of Three Different Marker Systems to Estimate Genetic Diversity of Indian Elite Rice Varieties

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Genetic diversity among 42 Indian elite rice varieties, which is important for selection of parents for conventional breeding and hybrid program, was evaluated using three different types of DNA markers and parentage analysis. Random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and sequence tagged microsatellite site (STMS) markers resulted in mean heterozygosity values of 0.429, 0.675 and 0.882 over all loci, respectively, and marker index values of 2.21, 4.05 and 5.49, respectively. The three molecular marker systems together provide wider genome coverage and, therefore, would be a better indicator of the genetic relationships among the 42 elite rice cultivars than those revealed using individual molecular markers. A total of 153 bands (91%) were polymorphic out of 168 bands amplified, considering all the markers together. The average genetic similarity coefficient across all the 861 cultivar pairs was 0.70 while the average coefficient of parentage was 0.10. Cluster analysis revealed that there was a very poor correlation (correlation coefficient <0.1) between dendrograms generated using coefficients of parentage and molecular marker generated genetic similarities, which can be attributed to selection pressure, genetic drift, sampling of loci and unknown relationships among supposedly unrelated ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akagi, H., Y. Yohozeki, A. Inagaki & T. Fujimura, 1997. Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor. Appl. Genet. 94: 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Akagi, H., Y. Yohozeki, A. Inagaki, A. Nakamura & T. Fujimura, 1996. A co-dominant DNA marker closely linked to the rice nuclear restorer gene Rf-1, identified with inter-SSR fingerprinting. Genome 39: 1205–1209.

    PubMed  CAS  Google Scholar 

  • Arumunagathan, K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Mol. Biol. 9: 208–218.

    Google Scholar 

  • Arunachalam, V., 2000. Paradigms of participatory enhancement of rice productivity: suggestions based on a case study in India. Current Sci. 79: 369–372.

    Google Scholar 

  • Beer, S.C., J. Goffreda, T.D. Phillips. J.P. Murphy & M.E. Sorrells, 1993. Assessment of genetic variation in Avena sterilisusing morphological traits, isozymes and RFLPs. Crop Sci. 33: 1386–1393.

    Article  CAS  Google Scholar 

  • Blair, M.W., O. Panaud & S.R. McCouch, 1999. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativaL.). Theor. Appl. Genet. 98: 780–792.

    Article  CAS  Google Scholar 

  • Bohn, M., H.F. Utz & A.E. Melchinger, 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci. 39: 228–237.

    Article  CAS  Google Scholar 

  • Carmona, P.S., 1990. Contribution of INGER (International Net work for the Genetic Evaluation of Rice) to broaden the genetic base of rice in the state of Rio Grande do Sul, Brazil, pp. 153–158 in INGER-Latin America Report: First semester 1990. Cali, Colombia, Bilingual Edition.

  • Carter, T.E. Jr., Z. Gizlice & J.W. Burton, 1993. Coefficient of parentage and genetic similarity estimates for 258 North American public cultivars released during 1945–88. USDA Tech Bull. 1814. US Gov. Print Office, Washington DC.

    Google Scholar 

  • Chen, X., S. Temnykh, Y. Xu, Y.G. Cho & S.R. McCouch, 1997. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativaL.). Theor. Appl. Genet. 95: 553–567.

    Article  CAS  Google Scholar 

  • Cho, Y.G., T. Ishii, S. Temnykh, X. Chen, L. Lipovich, S.R. McCouch, W.D. Park, N. Ayres & S. Cartinhour, 2000. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativaL.). Theor. Appl. Genet. 100: 713–722

    Article  CAS  Google Scholar 

  • Cox, T.S., G.L. Lookhart, D.E. Walker, L.G. Harrell, L.D. Albers & D.M. Rogers, 1985. Genetic relationships among hard red winter wheat cultivars as evaluated by pedigree analysis and gliadin polyacrylamide gel electrophoretic patterns. Crop Sci. 25: 1058–1063.

    Article  Google Scholar 

  • Cuevas-Perez, F.E., E.P. Guimaraes, L.E. Berrio & D.I. Gonzalez, 1992. Genetic base of irrigated rice in Latin America and the Caribbean, 1971 to 1989. Crop Sci. 32: 1054–1058.

    Article  Google Scholar 

  • Davierwala, A.P., W. Ramakrishna, P.K. Ranjekar & V.S. Gupta, 2000. Sequence variations at a complex microsatellite locus in rice and its conservation in cereals. Theor. Appl. Genet. 101: 1291–1298.

    Article  CAS  Google Scholar 

  • Delannay, X., D.M. Rodger & R.G. Palmer, 1983. Relative genetic contributions among ancestral lines to North American soybean cultivars. Crop Sci. 23: 944–949.

    Article  Google Scholar 

  • Deshpande, A.D., W. Ramakrishna, G.P. Mulay, V.S. Gupta & P.K. Ranjekar, 1998. Evolutionary and polymorphic organization of the knotted-1homeobox in cereals. Theor. Appl. Genet. 97: 135–140.

    Article  CAS  Google Scholar 

  • Deshpande, V.G. & P.K. Ranjekar, 1980. Repetitive DNA in three Gramineaespecies with low DNA content. Hoppe-Seyler's Z. Physiol. Chem. 361: 1223–1233.

    PubMed  CAS  Google Scholar 

  • Dilday, R.H., 1990. Contribution of ancestral lines in the development of new cultivars of rice. Crop Sci. 30: 905–911.

    Article  Google Scholar 

  • Fukuoka, S., K. Hosaka & O. Kamijima, 1992. Use of random amplified polymorphic DNAs (RAPDs) for identification of rice accessions. Japan J. Genet 67: 243–252.

    Article  CAS  Google Scholar 

  • Goldberg, R.B., G. Hoschek & J.C. Kamaley, 1978. Sequence complexity of nuclear and polysomal RNA in leaves of the tobacco plant. Cell 14: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Graner, A., W.F. Ludwig & A.E. Melchinger, 1994. Relationships among European barley germplasm: II. Comparison of RFLP and pedigree data. Crop Sci. 34: 1199–1205.

    Article  Google Scholar 

  • Guimaraes, E.P., J. Borrero & Y. Ospina-Rey, 1996. Genetic diversity of upland rice germplasm distributed in Latin America. Pesq. Agropec. Bras. Brasilia 31: 187–194.

    Google Scholar 

  • Gupta, V.S., W. Ramakrishna, S.R. Rawat & P.K. Ranjekar, 1994. (CAC)5detects DNA fingerprints and sequences homologous to gene transcripts in rice. Biochem. Genet. 2: 1–8.

    Article  Google Scholar 

  • Huang, L., E. Millet & M. Feldman, 1996. Genetic relationships among Mediterranean common wheat cultivars as determined by RFLP and parentage analyses. J. Genet. Breed. 50: 377–382.

    CAS  Google Scholar 

  • Joshi, S.P., V.S. Gupta, R.K. Aggarwal, P.K. Ranjekar & D.S. Brar, 2000. Genetic diversity and phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theor. Appl. Genet 100: 1311–1320.

    Article  CAS  Google Scholar 

  • Kaneda, C., 1985. Development of very high-yield rice varieties. Farming-Japan 19: 25–29.

    Google Scholar 

  • Kempthorne, O., 1969. An Introduction to Genetic Statistics. Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Kim, H.S. & R.W. Ward, 1997. Genetic diversity in eastern U.S. soft winter wheat (Triticum aestivumL. em. Thell.) based on RFLPs and coefficients of parentage. Theor. Appl. Genet. 94: 472–479.

    Article  Google Scholar 

  • Kim, N.S., K.M. Shim, K.M. Yoon, Y.B. Shin, Y.S. Cho, M.Y. Eun & Y.G. Cho, 1996. Polymorphism and phylogenetic analyses in rice cultivated in Korea by RAPDs and RFLPs. Kor. J. Genet. 18: 211–224.

    CAS  Google Scholar 

  • Knauft, D.A. & D.W. Gorbet, 1989. Genetic diversity among peanut cultivars. Crop Sci. 29: 1417–1422.

    Article  Google Scholar 

  • Ko, H.L., D.C. Cowan, R.J. Henry, G.C. Graham, A.B. Blakeney & L.G. Lewin, 1994. Random amplified polymoprhic DNA analysis of Australian rice (Oryza sativaL.) varieties. Euphytica 80: 179–189.

    Article  CAS  Google Scholar 

  • Kojima, T., T. Nagaoka, K. Noda & Y. Ogihara, 1998. Genetic linkage map of ISSR and RAPD markers in Eikorn wheat in relation to that of RFLP markers. Theor. Appl. Genet. 96: 37–45.

    Article  CAS  Google Scholar 

  • Kurata, N., Y. Nagamura, K. Yamamoto, Y. Harushima, N. Sue, J. Wu, B.A. Antonio, A. Shomura, T. Shimizu, S.Y. Lin, T. Inoue, A. Fukuda, T. Shimano, Y. Kuboki, T. Toyama, Y. Miyamoto, T. Kirihara, K. Hayasaka, A. Miyao, L. Monna, H.S. Zhong, Y. Tamura, Z-X. Wang, T. Momma, Y. Umehara, M. Yano, T. Sasaki & Y. Minobe, 1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet. 8: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Lin, M.S., 1991. Genetic base of japonica rice varieties released in Taiwan. Euphytica 56: 43–46.

    Google Scholar 

  • Mackill, D.J., 1995. Classifying japonica rice cultivars with RAPD markers. Crop Sci. 35: 889–894.

    Article  CAS  Google Scholar 

  • Malecot, G., 1948. Les mathematiques de l'heredite. Masson et Cie, Paris.

    Google Scholar 

  • McCouch, S.R., X. Chen, O. Panaud, S. Temnykh, Y. Xu, Y.G. Cho, N. Haung, T. Ishii & M. Blair, 1997. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol. Biol. 35: 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Melchinger, A.E., A. Graner, M. Singh & M.M. Messmer, 1994. Relationships among winter and spring cultivars revealed by RFLP's. Crop Sci. 34: 1191–1199.

    Article  Google Scholar 

  • Messmer, M.M., A.E. Melchinger, R.G. Hermann & J. Boppermaier, 1993. Relationships among early European maize inbreds: II. Comparison of pedigree and RFLP data. Crop Sci. 33: 944–950.

    Article  Google Scholar 

  • Monna, L., A. Miyao, T. Inoue, S. Fukuoka, M. Yamazaki, H. Sun Zhong, T. Sasaki & Y. Minobe, 1994. Determination of RAPD markers in rice and their conversion into sequence-tagged sites (STSs) and STS-specific primers. DNA Res. 1: 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Morinaga, T., 1964. Cytological investigations on Oryzaspecies, pp. 91–103, in: Rice Genetics and Cytogenetics, edited by IRRI. Elsevier, Amsterdam.

    Google Scholar 

  • Murphy, J.P., T.S. Cox & D.M. Rodgers, 1986. Cluster analysis of red winter wheat cultivars based upon coefficients of parentage. Crop Sci. 26: 672–676.

    Article  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323.

    Article  PubMed  CAS  Google Scholar 

  • Olufowote, J.O., Y. Xu, X. Chen, W.D. Park, H.M. Beachell, R.H. Dilday, M. Goto & S.R. McCouch, 1997. Comparative evaluation of within-cultivar variation of rice (Oryza sativaL.) using microsatellite and RFLP markers. Genome 40: 370–378.

    PubMed  CAS  Google Scholar 

  • Panaud, O., X. Chen & S.R. McCouch, 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativaL.). Mol. Gen. Genet. 252: 597–607.

    PubMed  CAS  Google Scholar 

  • Panaud, O., X. Chen & S.R. McCouch, 1995. Frequency of microsatellite sequences in rice (Oryza sativaL.) Genome 38: 1170–1176

    PubMed  CAS  Google Scholar 

  • Parsons, B.J., J.H. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 1997. Contrasting genetic diversity relationships are revealed in rice (Oryza sativaL.) using different marker types. Mol. Breed 3: 115–125.

    Article  CAS  Google Scholar 

  • Plaschke, J., M.W. Ganal & M.S. Roder, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 91: 1001–1007.

    Article  CAS  Google Scholar 

  • Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey & A. Rafalski, 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225–238.

    Article  CAS  Google Scholar 

  • Prabhu, R.R., D. Webb, H. Jessen, S. Luk, S. Smith & P.M. Greshoff, 1997. Genetic relatedness among soybean genotypes using DNA amplification fingerprinting (DAF), RFLP and pedigree. Crop Sci. 37: 1590–1595.

    Article  CAS  Google Scholar 

  • Prevost, A. & M.J. Wilkinson, 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet. 98: 107–112.

    Article  CAS  Google Scholar 

  • Ramakrishna, W., A.P. Davierwala, V.S. Gupta & P.K. Ranjekar, 1998. Expansion of (GA)ndinucleotide at a microsatellite locus associated with domestication in rice. Biochem. Genet. 36: 323–327.

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna, W., K.V. Chowdari, M.D. Lagu, V.S. Gupta & P.K. Ranjekar, 1995. DNA fingerprinting to detect genetic variation in rice using hypervariable DNA sequences. Theor. Appl. Genet. 90: 1000–1006.

    Article  CAS  Google Scholar 

  • Ramakrishna, W., M.D. Lagu, V.S. Gupta & P.K. Ranjekar, 1994. DNA fingerprinting in rice using oligonucleotide probes specific for simple repetitive DNA sequences. Theor. Appl. Genet. 88: 402–406.

    Google Scholar 

  • Rogers, S.O. & A.J. Bendich, 1988. Extraction of DNA from plant tissues, in: Plant Molecular Biology Manual A6.1, edited by S.B. Gelvin, R.A. Schilperoort, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Rohlf, F.J., 1993. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System Version 1.80. State University of New York, Stony Brook, NY, (Owner's manual) Exeter Software, Setauket, New York.

    Google Scholar 

  • Schlotterer C., C. Vogel & D. Tautz, 1997. Polymorphism and locusspecific effects on polymorphism at microsatellite loci in natural Drosophila melanogasterpopulations. Genetics 146: 309–320.

    PubMed  CAS  Google Scholar 

  • Schut, J.W., X. Qi & P. Stam, 1997. Association between relationship measures based on AFLP markers, pedigree data and morphological traits in barley. Theor. Appl. Genet. 95: 1161–1168.

    Article  CAS  Google Scholar 

  • Second, G., 1982. Origin of the genetic diversity of cultivated rice (Oryzassp.). Study of the polymorphism scored at 40 isozyme loci. Jpn. J. Genet. 57: 25–57.

    Google Scholar 

  • Skorupska, H.T., I.S. Choi, A.P. Rao-Arelli & W.C. Bridges, 1994. Resistance to soybean cyst nematode and molecular polymorphism in various sources of Peking soybean. Euphytica 75: 63–70.

    Article  Google Scholar 

  • Smouse, P.E., J.C. Long & R.R. Sokal, 1986. Multiple regression and correlation extensions of the Mantel tests of matrix correspondence. Syst. Zool. 35: 627–632.

    Article  Google Scholar 

  • Sneath P.H.A. & R.R. Sokal, 1973. Numerical Taxonomy, pp. 573. Freeman, San Francisco.

    Google Scholar 

  • Sokal, R.R. & P.H.A. Sneath, 1963. Principles of Numerical Taxonomy, pp. 359. Freeman, San Francisco.

    Google Scholar 

  • Souza, E. & M.E. Sorrells, 1989. Pedigree analysis of North American oat cultivars released from 1951 to 1985. Crop Sci. 29: 595–601.

    Article  Google Scholar 

  • Staub J.E., F.C. Serquen & M. Gupta 1996. Genetic markers, map construction and their application in plant breeding. Hort. Sci. 31: 729–741.

    CAS  Google Scholar 

  • St. Martin, S.K., 1982. Effective population size for the soybean improvement program in maturity groups 00 to IV. Crop Sci. 22: 151–152.

    Article  Google Scholar 

  • Sun, G.L., O. Diaz, B. Salomon & R. von Bothmer, 1999. Genetic diversity in Elymus caninusas revealed by isozyme, RAPD and microsatellite markers. Genome 42: 420–431.

    Article  PubMed  CAS  Google Scholar 

  • Tateoka, 1962. Taxonomic studies of OryzaII. Several species complex. Bot. Mag. Tokyo 75: 165–173.

    Google Scholar 

  • Temnykh S., W.D. Park, N. Ayres, S. Cartinhour, N. Hauck, L. Lipovich, Y.G. Cho, T. Ishii, S.R. McCouch, 2000. Mapping and genome organization of microsatellite sequences in rice (Oryza sativaL.). Theor. Appl. Genet. 100: 697–712

    Article  CAS  Google Scholar 

  • Thanh, N.D., H.G. Zheng, N.V. Dong, L.N. Trinh, M.L. Ali & H.T. Nguyen, 1999. Genetic variation in root morphology and microsatellite DNA loci in upland rice (Oryza sativaL.) from Vietnam. Euphytica 105: 43–51.

    Article  Google Scholar 

  • Viramani, S.S., 1994. Hybrid Rice Technology: New Developments and Future Prospects, pp. 157–171. IRRI Publication.

  • Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson, H.S. Pooni, T.P. Clemeno & H.J. Newbury, 1996. Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76: 296–304.

    Google Scholar 

  • Virk, P.S., B.V. Ford-Lloyd, M.T. Jackson & H.J. Newbury, 1995a. Use of RAPD for the study of diversity within plant germplasm collections. Heredity 74: 170–179.

    PubMed  CAS  Google Scholar 

  • Virk, P.S., H.J. Newbury, M.T. Jackson & B.V. Ford-Lloyd, 1995b. The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theor. Appl. Genet. 90: 1049–1055.

    Article  CAS  Google Scholar 

  • Wang, G., S. Castiglione, J. Zhang, R. Fu, J. Ma, W. Li, Y. Sun & F. Sala, 1994. Hybrid rice (Oryza sativaL.): identification and parentage determination by RAPD fingerprinting. Plant Cell Rep. 14: 112–115.

    Article  CAS  Google Scholar 

  • Wetton, J. H., R.E. Carter, D.T. Parkin & D.C. Walters, 1987. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature 327: 147–149.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.L. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.

    PubMed  CAS  Google Scholar 

  • Wu, K.S. & S.D. Tanksley, 1993. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet. 241: 225–235.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, J., J. Li, L. Yuan & S.R. McCouch, 1996. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor. Appl. Genet. 92: 637–643.

    Article  CAS  Google Scholar 

  • Yang, G.P., M.A. Saghai Maroof, C.G. Xu, Q. Zhang & R.M. Biyashev, 1994. Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol. Gen. Genet. 245: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Yu, L.X. & H.T. Nguyen, 1994. Genetic variation detected with RAPD markers among upland and lowland rice cultivars (Oryza sativaL.). Theor. Appl. Genet. 87: 668–672.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davierwala, A., Chowdari, K., Kumar, S. et al. Use of Three Different Marker Systems to Estimate Genetic Diversity of Indian Elite Rice Varieties. Genetica 108, 269–284 (2000). https://doi.org/10.1023/A:1004160232679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004160232679

Navigation