Skip to main content
Log in

13C and 15N depletion in components of a foodweb from an ephemeral boreal wetland compared to boreal lakes: putative evidence for microbial processes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Stable carbon and nitrogen isotope ratios were used to posit the relative importance of microbial processes on energy pathways in an ephemeral, humic boreal wetland compared to four clearwater lakes in northwestern Ontario, Canada. In addition to algae and dipteran larvae, odonate larvae were sampled as these latter organisms are known to predate indiscriminately on smaller invertebrates and are thus likely to have average isotope ratios reflective of their habitats. Similarities in δ13C and δ15N values between lake insect larvae and emerged adults suggested that littoral foodwebs in these oligotrophic lakes may rely to a considerable degree upon terrestrial carbon. Wetland insect larvae and algae were depleted in both 13C and 15N compared to biota in lakes. Carbon isotope analysis implied a substantial presence of microbial respiration from decomposition in the humic wetland, whereas nitrogen isotope analysis suggested the prevalence of microbially modified nitrogen dynamics, including the possibilty of N-fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose, S. H. & M. J. DeNiro, 1986. The isotopic ecology of East African mammals. Oecologia 69: 395–406. Angardi, T. R., 1994. Trophic linkages in the lower Colorado River: multiple stable isotope evidence. J. n. am. Benthol. Soc. 13: 479–495.

    Google Scholar 

  • Araujo-Lima, C., B. R. Peterson, R. Victoria & L. Martinelli, 1986. Energy sources for detritivorous fishes in the Amazon. Science 234: 1256–1258.

    Google Scholar 

  • Barsdale, R. J.& V. Alexander, 1975. The nitrogen balance of Arctic tundra: pathways, rates and environmental implications. J. Envir. Qual. 4: 111–117.

    Google Scholar 

  • Baselier, K., 1980. Fixation and uptake of nitrogen in Sphagnum blue-green algal associations. Oikos 34: 239–242.

    Google Scholar 

  • Blasco, J. A. & D. C. Jordan, 1976. Nitrogen fixation in the Muskeg ecosystem of the James Bay Lowlands, northern Ontario. Can. J. Microbiol. 22: 897–907.

    Google Scholar 

  • Boon, P. I. & S. E. Bunn, 1994. Variations in the stable isotope composition of aquatic plants and their implications for food web analysis. Aquat. Bot. 48: 99–108.

    Google Scholar 

  • Bowden, W. B., 1987. The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4: 313–348.

    Google Scholar 

  • Brown, S., 1990. Structure and dynamics of basin forested wetlands in North America. In Lugo, A. E., M. Brinson & S. Brown (eds), Forested Wetlands. Ecosystems of the World. Elsevier, New York: 171–212.

    Google Scholar 

  • Bunn, S. E. & P. I. Boon, 1993. What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. Oecologia 96: 85–94.

    Google Scholar 

  • Cabana, G. & J. B. Rasmusse, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc. natn. Acad. Sci. 93: 10844–10847.

    Google Scholar 

  • Conners, M. E. & R. J. Naiman, 1984. Particulate allochthonous inputs: relationships with stream size in an undisturbed watershed. Can. J. Fish. aquat. Sci. 41: 1473–1484.

    Google Scholar 

  • Da Silveira, L., L. Sternberg, S. S. Mulkey & S. J. Wright, 1989. Ecological interpretations of leaf carbon isotope ratios: influence of respired carbon dioxide. Ecology 70: 1317–1324.

    Google Scholar 

  • Del Giorgio, P. A. & R. L. France, 1996. Ecosytem-specific patterns in the relationship between zooplankton and POM or microplankton δ 13C. Limnol. Oceanogr. 41: 359–365.

    Google Scholar 

  • Dykyjava, D. & J. Kvet, 1978. Pond Littoral Ecoystems. Structure and Functioning. Springer-Verlag, New York: 464 pp.

    Google Scholar 

  • Estep, M. L. & S. Vigg, 1985. Stable carbon and nitrogen isotope tracers of trophic dynamics in natural populations and fisheries of the Lahontan Lake System, Nevada. Can. J. Fish. aquat. Sci. 42: 1712–1719.

    Google Scholar 

  • Flett, R. J., J. Rudd & R. D. Hamilton, 1975. Acetylene reduction assays for nitrogen fixation in freshwaters: a note of caution. Appl. Microbiol. 29: 580–583.

    Google Scholar 

  • France, R. L., 1994. Nitrogen isotopic composition of marine and freshwater invertebrates. Mar. Ecol. Prog. Ser. 115: 205–207.

    Google Scholar 

  • France, R. L., 1995a. Critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Can. J. Fish. aquat. Sci. 52: 651–656.

    Google Scholar 

  • France, R. L., 1995b. Differentiation between littoral and pelagic foodwebs in lakes using carbon stable isotopes. Limnol. Oceanogr. 40: 1310–1313.

    Google Scholar 

  • France, R. L., 1995c. Empirically estimating the lateral transport of riparian leaf litter to lakes. Freshwat. Biol. 34: 495–500.

    Google Scholar 

  • France, R. L., 1995d. Source variability in δ 15N of autotrophs as a potential aid in measuring allochthony in freshwaters. Ecography 18: 318–320.

    Google Scholar 

  • France, R. L., 1995e. Stable nitrogen isotopes in fish: literature synthesis on the influence of ecotonal coupling. Estuar. coast. shelf Sci. 41: 737–742.

    Google Scholar 

  • France, R. L., 1996a. Carbon isotope ratios in logged and unlogged boreal forests: examination of the potential for determining wildlife habitat use. Envir. Manag. 20: 249–255.

    Google Scholar 

  • France, R. L., 1996b. Absence or masking of metabolic fractionations of 13C in a freshwater benthic food web. Freshwat. Biol. 36: 1–6.

    Google Scholar 

  • France, R. L., 1996c. Stable isotopic survey of the role macrophytes in the carbon flow of aquatic foodwebs. Vegetatio 124: 67–72.

    Google Scholar 

  • France, R. L., 1996d. Ontogenetic shift in stable carbon isotope ratios in crayfish as a measure of land-water ecotonal coupling. Oecologia 107: 239–242.

    Google Scholar 

  • France, R. L., 1998a. Problems, practical and psychological, using stable carbon isotope ratios for discerning utilization of allochthonous detritus by stream fauna: a tale of two studies. In Proc. Forest-Fish Conference: Land Management Practices Affecting Aquatic Ecosystems. Can. For. Serv. Inf. Rep. NOR-X-356: 177–182.

  • France, R. L., 1998b. Density-weighted C-13 analysis of detritivory and algivory in littoral macroinvertebrate communities of boreal headwater lakes. Ann. Zool. fenn. 35: 187–193.

    Google Scholar 

  • France, R. L., 1999. Relationships between DOC concentration and epilithon stable isotopes in boreal lakes. Freshwat. Biol. 41: 101–105.

    Google Scholar 

  • France, R. & A. Cattaneo, 1998. δ 13C variability of benthic algae: effects of water colour via modulation by stream current. Freshwat. Biol. 39: 617–622.

    Google Scholar 

  • France, R. L. & J. G. Homquist, 1997. δ 13C variability of macroalgae: effects of water motion via baffling by seagrasses and mangroves. Mar. Ecol. Prog. Ser. 149: 305–308.

    Google Scholar 

  • France, R. L. & R. H. Peters, 1995. Predictive model of the effects on lake metabolism of decreased airborne litterfall through riparian deforestation. Conserv. Biol. 9: 1578–1586.

    Google Scholar 

  • France, R., P. del Giorgio & K. Westcott, 1997. Productivity and heterotrophy influences on zooplankton δ 13C in northern temperate lakes. Aquat. Microbiol. Ecol. 12: 85–93.

    Google Scholar 

  • France, R., J. Holmquist, M. Chandler & A. Cattaneo, 1998. N-15 evidence for nitrogen fixation associated with macroalgae from a seagrass-mangrove-coral reef system. Mar. Ecol. Prog. Ser. 167: 297–299.

    Google Scholar 

  • Forsberg, B. R., C. Araujo-Lima, L. A. Martinelli, R. L. Victoria & J. A. Bonassi, 1993. Autotrophic carbon sources for fish of the central Amazon. Ecology 74: 643–652.

    Google Scholar 

  • Gasith, A. & A. D. Hasler, 1976. Airborne litterfall as a source of organic matter in lakes. Limnol. Oceanogr. 21: 253–259.

    Google Scholar 

  • Gu, B., D. M. Schell & V. Alexander, 1994. Stable carbon and nitrogen isotopic analysis of the plankton food web in a subarctic lake. Can. J. Fish. aquat. Sci. 51: 1338–1344.

    Google Scholar 

  • Hamilton, S. K., W. M. Lewis & S. J. Sippel, 1992. Energy sources for aquatic animals in the Orinoco River floodplain: evidence from stable isotopes. Oecologia 89: 324–330.

    Google Scholar 

  • Handley, L. L. & J. A. Raven, 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Envir. 15: 965–985.

    Google Scholar 

  • Hemminga, M. A., F. J. Slim, J. Kazunga, G. M. Ganssen, J. Nieuwenhuize & N. M. Kruyt, 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya) Mar. Ecol. Prog. Ser. 106: 291–301.

    Google Scholar 

  • Hemond, H. F., 1983. The nitrogen budget of Thoreau's Bog. Ecology 64: 99–109.

    Google Scholar 

  • Hessen, D. O., 1992. Dissolved organic carbon in a humic lake: effects on bacterial production and respiration. Hydrobiologia 229 (Dev. Hydrobiol. 73): 115–123.

    Google Scholar 

  • Johansson, F., 1991. Foraging modes in an assemblage of odonate larvae-effects of prey and interference. Hydrobiologia 209: 79–87.

    Google Scholar 

  • Johnson, D. M., 1991. Behavioral ecology of larval dragonflies and damselflies. Trends. Ecol. Evol. 6: 8–13.

    Google Scholar 

  • Keeley, J. E., 1989. Stable carbon isotopes in vernal pool aquatics of differing photosynthetic pathways. In Rundel, et al. (eds), Stable Isotopes in Ecological Research. Springer-Verlag: 76–81.

  • Keough, J. A., M. E. Sierszen & C. A. Hagley, 1996. Analysis of a Lake Superior coastal fod web with stable isotope techniques. Limnol. Oceanogr. 41: 136–146.

    Google Scholar 

  • Kline, T. C., J. J. Goering, O. A. Mathiesen, P. H. Poe, P. L. Parker & R. S. Scalan, 1993. Recycling of elements transported upstream by runs of Pacific Salmon: II. δ 15N and δ 13C evidence in the Kvichak River Watershed, Bristol Bay, southwestern Alaska. Can. J. Fish. aquat. Sci. 50: 2350–2365.

    Google Scholar 

  • Lin, G., T. Banks & L. Sternberg, 1991. Variation in δ 13C values for the seagrass Thalassia testudinum and its realations to mangrove carbon. Aquat. Bot. 40: 333–341.

    Google Scholar 

  • MacCabe, B., 1985. The dynamics of 13C in several New Zealand lakes. Ph.D. Thesis. Univ. of Waikata: 278 pp.

  • Mihuc, T. & D. Toetz, 1994. Determination of diets of alpine aquatic insects using stable isotopes and gut analysis. Am. Midl. Nat. 131: 146–155.

    Google Scholar 

  • Minagawa, M. & E. Wada, 1986. Nitrogen isotope ratios of red tide organisms in the East China Sea: a characterization of biological nitrogen fixation. Mar. Chem. 19: 245–259.

    Google Scholar 

  • Mitsch, W. J. & T. G. Gosselink, 1990. Wetlands. Van Nostrand Reinhold Publ., New York: 722 pp.

    Google Scholar 

  • Mize, A. L., 1993. Differential utilization of allochthonous and autochthonous carbon by aquatic insects of two shrub-steppe desert streams: a stable carbon isotope analysis and critique of the method. Battelle Memorial Institute, Pacific Northwest Laboratory, United States Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161: 114 pp.

    Google Scholar 

  • Neill, C. & J. C. Cornwell, 1992. Stable carbon, nitrogen and sulfur isotopes in a prairie marsh food web. Wetlands 12: 217–224.

    Google Scholar 

  • Owens, N. J. P., 1987. Natural variations in 15N in the marine environment. Adv. mar. Biol. 20: 389–451.

    Google Scholar 

  • Pandit, A. K. & V. Karl, 1982. Trophic structure of some typical wetlands. In Gopal, B., R. E. Turner, R. G. Wetzel & D. F. Whigham (eds), Wetlands. Ecology and Management. Int. Sci. Publ., India: 55–82.

    Google Scholar 

  • Pollard, J. B. & M. Berrill, 1992. The distribution of dragonfly nymphs across a pH gradient in south-central Ontario lakes. Can. J. Zool. 70: 878–885.

    Google Scholar 

  • Pritchard, G., 1964. The prey of dragonfly larvae (Odonata; Anisoptera) in ponds in northern Alberta. Can. J. Zool. 42: 785–800.

    Google Scholar 

  • Rau, G. H., 1978. Carbon-13 depletion in a subalpine lake: carbon flow implications. Science 201: 901–902.

    Google Scholar 

  • Rau, G. H., 1980. Carbon-13/carbon-12 variation in subalpine lake aquatic insects: food source implications. Can. J. Fish. aquat. Sci. 37: 742–746.

    Google Scholar 

  • Rau, G. H., 1981. Low 15N/14N in hydrothermal vent animals: ecological implications. Nature 289: 484–485.

    Google Scholar 

  • Rau, G. H., T. L. Hopkins & J. J. Torres, 1991. 15-N/14-N and 13-C/12-C in Weddell Sea invertebrates: implications for feeding diversity. Mar. Ecol. Prog. Ser. 77: 1–6.

    Google Scholar 

  • Reader, R. J., 1978. Primary production in northern bog marshes. In Good, R. E., D. E. Whigham & R. L. Simpson (eds), Freshwater Wetlands. Ecological Processes and Management Potential. Academic Press, New York: 53–62.

    Google Scholar 

  • Richardson, C. J., D. L. Tilton, J. A. Kadlec, J. P. M. Chamce & W. A. Wentz, 1978. Northern wetlands. In Good, R. E., D. E. Whigham & R. L. Simpson (eds), Freshwater Wetlands. Ecological Processes and Management Potential. Academic Press, New York: 163–179.

    Google Scholar 

  • Robarts, R. D., D. B. Donald & M. T. Arts, 1995. Phytoplankton primary production of three temporary northern prairie wetlands. Can. J. Fish. aquat. Sci. 52: 987–902.

    Google Scholar 

  • Rosenfeld, J. N. & R. J. Mackay, 1991. Assessing the food base of stream ecosytems: alternatives to the P/R ratio. Okios 50: 141–147.

    Google Scholar 

  • Rounick, J. S., M. J. Winterbourn & G. L. Lyon, 1982. Differential utilization of allochthonous and autochthonous inputs by aquatic invertebrates in some New Zealand streams: a stable isotope study. Oikos 39: 191–198.

    Google Scholar 

  • Salonen, K., K. Kononen & L. Arvola, 1983. Respiration of plankton in two small, polyhumic lakes. Hydrobiologia 101 (Dev. Hydrobiol. 13): 65–70.

    Google Scholar 

  • Schwintzer, C. R., 1979. Nitrogen fixation by Myrica gale root nodules in a Massachusetts wetland. Oecologia 43: 283–294.

    Google Scholar 

  • Schwintzer, C. R., 1983. Nonsymbiotic and symbiotic nitrogen fixation in a weakly minerotrophic peatland. Am. J. Bot. 70: 1071–1078.

    Google Scholar 

  • Shearer, G. B., D. H. Kohl & B. Commoner, 1974. The precision of determinations of nitrogen-15 in soils, fertilizers and shelf chemicals. Soil Sci. 118: 308–316.

    Google Scholar 

  • Sims, R. A., W. D. Towill, K. A. Baldwin & G. M. Wickware, 1989. Forest ecosystem classification for northwestern Ontario. Forestry Canada and the Ontario Ministry of Natural Resources Thunder Bay, Ontario: 191 pp.

    Google Scholar 

  • Small, E., 1972. Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can. J. Bot. 50: 2227–2233.

    Google Scholar 

  • Smith, S. V. & P. Kroopnick, 1981. Carbon-13 isotopic fractionation as a measure of aquatic metabolism. Nature 294: 252–253.

    Google Scholar 

  • Tilton, D. L., 1978. Comparitive growth and foliar element concentrations of Larix laricina over a range of wetland types in Minnesota. J. Ecol. 66: 499–512.

    Google Scholar 

  • Urban, N. R. & S. J. Eisenreich, 1988. Nitrogen fixation in a forested Minnesota bog. Can. J. Bot. 66: 435–449.

    Google Scholar 

  • Virginia, R. A. & C. C. Delwiche, 1982. Natural 15N abundance of presumed N2-fixing and non-N2-fixing plants from selected ecosystems. Oecologia 54: 317–325.

    Google Scholar 

  • Warren, R. H., 1989. Spatial and temporal variation in the structure of a fresh water food web. Oikos 55: 299–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

France, R.L., Schlaepfer, M.A. 13C and 15N depletion in components of a foodweb from an ephemeral boreal wetland compared to boreal lakes: putative evidence for microbial processes. Hydrobiologia 439, 1–6 (2000). https://doi.org/10.1023/A:1004131228183

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004131228183

Navigation