Skip to main content
Log in

Ultrastructural Immunogold Cytochemistry with Autoimmune Human Sera and an Antibody to Uridine Implicate Human Mast Cell Granules in RNA Biology

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Human mast cells are professional secretory cells that store synthetic products in large granules filling their cytoplasm. Unlike many secretory cells, the principal synthetic organelle, ribosome-rich endoplasmic reticulum, is a minor component of their cytoplasm. Sightings of nonmembrane-bound ribosomes in and near their secretory granules stimulated detailed ultrastructural studies of various RNA species to implicate secretory-storage granules in RNA biology. In the work reported here, postembedding immunogold ultrastructural cytochemistry indicates that human mast cells contain uridine, an integral ingredient of RNA, and ribonucleoproteins, known to associate with small nuclear RNAs important for splicing RNA precursors, several ribonucleoproteins with possible functions in other aspects of RNA biology and ribonucleoproteins known to associate with ribosomes. These findings should catalyse future work toward establishing the full functional repertoire of secretory-storage granules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asboe-Hansen G (1971) Mast cells and the skin. In: Helwig EB, Mostofi FK, eds. Monographs in Pathology-#10: The Skin. Baltimore: Williams & Wilkins Co. pp. 83-111.

    Google Scholar 

  • Bachmann M, Pfeifer K, Schröder HC, Müller WEG (1987) The nucleocytoplasmic shuttling of the La antigen in CV-1 cells. Mol Biol Rep 12: 239-240.

    Google Scholar 

  • Bassell GJ (1993) High resolution distribution of mRNA within the cytoskeleton. J Cell Biochem 52: 127-133.

    Google Scholar 

  • Bassell G and Singer RH (1997) mRNA and cytoskeletal filaments. Curr Opin Cell Biol 9: 109-115.

    Google Scholar 

  • Bassell GJ, Oleynikov Y, Singer RH (1999) The travels of mRNAs through all cells large and small. FASEB J 13: 447-454.

    Google Scholar 

  • Ben-Chetrit E, Chan EKL, Sullivan KF, Tan EM (1988) A 52-kD protein is a novel component of the SS-A/Ro antigenic particle. J Exp Med 167: 1560-1571.

    Google Scholar 

  • Bernhard W (1969) A new staining procedure for electron microscopical cytology. J Ultrastruct Res 27: 250-265.

    Google Scholar 

  • Busch H, Reddy R, Rothblum L, Choi YC (1982) SnRNAs, SnRNPs, and RNA processing. Annu Rev Biochem 51: 617-654.

    Google Scholar 

  • Conner GE, Nelson D, Wisniewolski R, Lahita RG, Blobel G, Kunkel HG (1982) Protein antigens of the RNA-protein complexes detected by anti-SM and anti-RNP antibodies found in serum of patients with systemic lupus erythematosus and related disorders. J Exp Med 156: 1475-1485.

    Google Scholar 

  • Davis L, Banker GA, Steward O (1987) Selective dendritic transport of RNA in hippocampal neurons in culture. Nature 330: 477-479.

    Google Scholar 

  • Dreyfuss G, Philipson L, Mattaj IW (1988) Ribonucleoprotein particles in cellular processes. J Cell Biol 106: 1419-1425.

    Google Scholar 

  • Dvorak AM (1987) Monograph-Procedural guide to specimen handling for the ultrastructural pathology service laboratory. J Electron Microsc Tech 6: 255-301.

    Google Scholar 

  • Dvorak AM (1991) Basophil and Mast Cell Degranulation and Recovery. Volume 4 in the series Blood Cell Biochemistry, JR Harris, series ed. Plenum Press, New York.

    Google Scholar 

  • Dvorak AM (1998a) Histamine content and secretion in basophils and mast cells. In Progress in Histochemistry and Cytochemistry, Vol 33 (No 3-4) Graumann W, Bendayan M, Bosman FT, Heitz PU, Larsson L-I, Ramaekers FC & Schumacher U, eds. Jena, Germany: Gustav Fischer Verlag, pp. I-X; 169-328.

    Google Scholar 

  • Dvorak AM (1998b) Cell biology of the basophil. Int Rev Cytol 180: 87-236.

    Google Scholar 

  • Dvorak AM, Morgan ES (2000) Ultrastructural cytochemical, immunocytochemical and in situ hybridization methods with polyuridine probes detect mRNA in human mast cell granules. Histochem J 32: 423-438.

    Google Scholar 

  • Dvorak AM, Morgan ES (2001) Ribosomes and secretory granules in human mast cells. Close associations demonstrated by staining with a chelating agent. Immunol Rev (in press).

  • Dvorak AM, Weller PF (2000) Ultrastructural analysis of human eosinophils. In: Human Eosinophils. Biological and Clinical Aspects, Vol 76, (Marone G, ed.) in the series Chemical Immunology (Adorini L, Arai K, Berek C, Capra JD, Schmitt-Verhulst A-M, Waxman BH, eds.), Basel: S. Karger, pp. 1-28.

    Google Scholar 

  • Dvorak AM, Hammel I, Schulman ES, Peters SP, MacGlashan Jr DW, Schleimer RP, Newball HH, Pyne K, Dvorak HF, Lichtenstein LM & Galli SJ (1984) Differences in the behavior of cytoplasmic granules and lipid bodies during human lung mast cell degranulation. J Cell Biol 99: 1678-1687.

    Google Scholar 

  • Dvorak AM, Schulman ES, Peters SP, MacGlashan Jr DW, Newball HH, Schleimer RP, Lichtenstein LM (1985) Immunoglobulin E-mediated degranulation of isolated human lung mast cells. Lab Invest 53: 45-56.

    Google Scholar 

  • Dvorak AM, Schleimer RP, Schulman ES, Lichtenstein LM (1986) Human mast cells use conservation and condensation mechanisms during recovery from degranulation. In vitro studies with mast cells purified from human lungs. Lab Invest 54: 663-678.

    Google Scholar 

  • Dvorak AM, Schleimer RP, Lichtenstein LM (1987) Morphologic mast cell cycles. Cell Immunol 105: 199-204.

    Google Scholar 

  • Dvorak AM, Schleimer RP, Lichtenstein LM (1988a) Human mast cells synthesize new granules during recovery from degranulation. In vitro studies with mast cells purified from human lungs. Blood 71: 76-85.

    Google Scholar 

  • Dvorak AM, Letourneau L, Login GR, Weller PF, Ackerman SJ (1988b) Ultrastructural localization of the Charcot-Leyden crystal protein (lysophospholipase) to a distinct crystalloid-free granule population in mature human eosinophils. Blood 72: 150-158.

    Google Scholar 

  • Dvorak AM, Morgan ES, Lichtenstein LM, Weller PF, Schleimer RP (2000a) RNA is closely associated with human mast cell secretory granules, suggesting a role(s) for granules in synthetic processes. J Histochem Cytochem 48: 1-12.

    Google Scholar 

  • Dvorak AM, Morgan ES, Lichtenstein LM, Schleimer RP (2000b) Ultrastructural autoradiographic analysis of RNA in isolated human lung mast cells during secretion and recovery from secretion. Int Arch Allergy Immunol 122: 124-136.

    Google Scholar 

  • Eliceiri GL, Gurney Jr T (1978) Subcellular location of precursors to small nuclear RNAspecies C andDand of newly synthesized 5 S RNA in HeLa cells. Biochem Biophys Res Commun 81: 915-919.

    Google Scholar 

  • Elkon KB, Culhane L (1984) Partial immunochemical characterization of the Ro and La proteins using antibodies from patients with the sicca syndrome and lupus erythematosus. J Immunol 132: 2350-2356.

    Google Scholar 

  • Elkon KB, ParnaSS-A AP, Foster CL (1985) Lupus autoantibodies target ribosomal P proteins. J Exp Med 162: 459-471.

    Google Scholar 

  • Elkon K, Skelly S, ParnaSS-A A, Moller W, Danho W, WeiSS-Bach H, Brot N (1986) Identification and chemical synthesis of a ribosomal protein antigenic determinant in systemic lupus erythematosus. Proc Natl Acad Sci USA 83: 7419-7423.

    Google Scholar 

  • Etkin LD, Lipshitz HD (1999) RNA localization. FASEB J 13: 419-420.

    Google Scholar 

  • Fakan S, Leser G, Martin TE (1984) Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J Cell Biol 98: 358-363.

    Google Scholar 

  • Farris AD, Puvion-Dutilleul F, Puvion E, Harley JB, Lee LA (1997) The ultrastructural localization of 60-kDa Ro protein and human cytoplasmic RNAs: association with novel electron-dense bodies. Proc Natl Acad Sci USA 94: 3040-3045.

    Google Scholar 

  • Garner CC, Tucker RP, Matus A (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 336: 674-677.

    Google Scholar 

  • Gottlieb E (1990) Messenger RNA transport and localization. Curr Opin Cell Biol 2: 1080-1086.

    Google Scholar 

  • Gray MW, Cedergren R (1993) The new age of RNA. FASEB J 7: 4-6.

    Google Scholar 

  • Hammel I, Dvorak AM, Peters SP, Schulman ES, Dvorak HF, Lichtenstein LM, Galli SJ (1985) Differences in the volume distributions of human lung mast cell granules and lipid bodies: evidence that the size of these organelles is regulated by distinct mechanisms. J Cell Biol 100: 1488-1492.

    Google Scholar 

  • Hardin JA, Rahn DR, Shen C, Lerner MR, Wolin SL, Rosa MD, Steitz JA (1982) Antibodies from patients with connective tissue diseases bind specific subsets of cellular RNA-protein particles. J Clin Invest 70: 141-147.

    Google Scholar 

  • Hazelrigg T (1998) The destinies and destinations of RNAs. Cell 95: 451-460.

    Google Scholar 

  • Heinrichs V, Bach M, Winkelmann G, Lührmann R (1990) U1-specific protein C needed for efficient complex formation of U1 snRNP with a 50 splice site. Science 247: 69-72.

    Google Scholar 

  • Hendrick JP, Wolin SL, Rinke J, Lerner MR, Steitz JA (1981) Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells. Mol Cell Biol 1: 1138-1149.

    Google Scholar 

  • Hinterberger M, Pettersson I, Steitz JA (1983) Isolation of small nuclear ribonucleoproteins containing U1, U2, U4, U5, and U6 RNAs. J Biol Chem 258: 2604-2613.

    Google Scholar 

  • Jansen R-P (1999) RNA-cytoskeletal associations. FASEB J 13: 455-466.

    Google Scholar 

  • Jirikowski GF, Sanna PP, Bloom FE (1990) mRNA coding for oxytocin is present in axons of the hypothalamo-neurohypophysial tract. Proc Natl Acad Sci USA 87: 7400-7404.

    Google Scholar 

  • Jirikowski GF, Sanna PP, Maciejewski-Lenoir D, Bloom FE (1992) Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science 255: 996-998.

    Google Scholar 

  • Kaplan MM (1987) Primary biliary cirrhosis. N Engl J Med 316: 521-528.

    Google Scholar 

  • Knowles RB, Sabry JH, Martone ME, Deerinck TJ, Ellisman MH, Bassell GJ, Kosik KS (1996) Translocation of RNA granules in living neurons. J Neurosci 16: 7812-7820.

    Google Scholar 

  • Konarska MM, Sharp PA (1987) Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell 49: 763-774.

    Google Scholar 

  • Krämer A, Keller W, Appel B, Luhrmann R (1984) The 50 terminus of the RNA moiety of U1 small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell 38: 299-307.

    Google Scholar 

  • Kuo H-C, Nasim F-UH, Grabowski PJ (1991) Control of alternative splicing by the differential binding of U1 small nuclear ribonucleoprotein particle. Science 251: 1045-1050.

    Google Scholar 

  • Lasko P (1999) RNA sorting in Drosophila oocytes and embryos. FASEB J 13: 421-433.

    Google Scholar 

  • Lobo SM, Hernandez N (1989) A 7 bp mutation converts a human RNA polymerase II snRNA promoter into an RNA polymerase III promoter. Cell 58: 55-67.

    Google Scholar 

  • Madore SJ, Wieben ED, Pederson T (1984) Intracellular site of U1 small nuclear RNA processing and ribonucleoprotein assembly. J Cell Biol 98: 188-192.

    Google Scholar 

  • Maniatis T, Reed R (1987) The role of small nuclear ribonucleoprotein particles in pre-mRNA splicing. Nature 325: 673-678.

    Google Scholar 

  • Martone ME, Pollock JA, Jones YZ, Ellisman MH (1996) Ultrastructural localization of dendritic messenger RNA in adult rat hippocampus. J Neurosci 16: 7437-7446.

    Google Scholar 

  • Mattaj IW (1990) Splicing stories and poly(A) tales: an update on RNA processing and transport. Curr Opin Cell Biol 2: 528-538.

    Google Scholar 

  • McNeilage LJ, Whittingham S, Jack I, Mackay IR (1985) Molecular analysis of the RNA and protein components recognized by anti-La(SS-B) autoantibodies. Clin Exp Immunol 62: 685-695.

    Google Scholar 

  • Mehlin H, Daneholt B, Skoglund U (1992) Translocation of a specific premessenger ribonucleoprotein particle through the nuclear pore studied with electron microscope tomography. Cell 69: 605-613.

    Google Scholar 

  • Merlie JP, Sanes JR (1985) Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature 317: 66-68.

    Google Scholar 

  • Mount SM, Pettersson I, Hinterberger M, Karmas A, Steitz JA (1983) The U1 small nuclear RNA-protein complex selectively binds a 50 splice site in vitro. Cell 33: 509-518.

    Google Scholar 

  • Mowry KL, Cote CA (1999) RNA sorting in Xenopus oocytes and embryos. FASEB J 13: 435-445.

    Google Scholar 

  • Nyman U, Hallman H, Hadlaczky G, Pettersson I, Sharp G, Ringertz NR (1986) Intranuclear localization of snRNP antigens. J Cell Biol 102: 137-144.

    Google Scholar 

  • Oleynikov Y, Singer RH (1998) RNA localization: different zipcodes, same postman? Trends Cell Biol 8: 381-383.

    Google Scholar 

  • Padgett RA, Mount SM, Steitz JA, Sharp PA (1983) Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein. Cell 35: 101-107.

    Google Scholar 

  • Palade GE, Porter KR (1954) Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J Exp Med 100: 641-662.

    Google Scholar 

  • Patton JG, Wieben ED (1987) U1 precursors: Variant 30 flanking sequences are transcribed in human cells. J Cell Biol 104: 175-182.

    Google Scholar 

  • Perry RP (1981) RNA processing comes of age. J Cell Biol 91: 28s-38s.

    Google Scholar 

  • Peters A, Palay SL, de F Webster H (1976) The Fine Structure of the Nervous System: The Neurons and Supporting Cells. Philadelphia: W.B. Saunders Co.

    Google Scholar 

  • Pettersson I, Hinterberger M, Mimori T, Gottlieb E, Steitz JA (1984) The structure of mammalian small nuclear ribonucleoproteins. Identification of multiple protein components reactive with anti-(U1)ribonucleoprotein and anti-Sm autoantibodies. J Biol Chem 259: 5907-5914.

    Google Scholar 

  • Puvion E, Viron A, Assens C, Leduc EH, Jeanteur P (1984) Immunocytochemical identification of nuclear structures containing snRNPs in isolated rat liver cells. J Ultrastruct Res 87: 180-189.

    Google Scholar 

  • Qu Z, Huang X, Ahmadi P, Stenberg P, Liebler JM, Le A-C, Planck SR, Rosenbaum JT (1998a) Synthesis of basic fibroblast growth factor by murine mast cells. Regulation by transforming growth factor-β, tumor necrosis factor-α, and stem cell factor. Int Arch Allergy Immunol 115: 47-54.

    Google Scholar 

  • Qu Z, Kayton RJ, Ahmadi P, Liebler JM, Powers MR, Planck SR, Rosenbaum JT (1998b) Ultrastructural immunolocalization of basic fibroblast growth factor in mast cell secretory granules. Morphological evidence for bFGF release through degranulation. J Histochem Cytochem 46: 1119-1128.

    Google Scholar 

  • Reddy R, Busch H (1983) Small nuclear RNAs and RNA processing. Prog Nucleic Acid Res Mol Biol 30: 127-162.

    Google Scholar 

  • Reed R, Griffith J, Maniatis T (1988) Purification and visualization of native spliceosomes. Cell 53: 949-961.

    Google Scholar 

  • Rings EHHM, Büller HA, Neele AM, Dekker J (1994) Protein sorting versus messenger RNA sorting? Eur J Cell Biol 63: 161-171.

    Google Scholar 

  • Rinke J, Steitz JA (1982) Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La lupus antibodies. Cell 29: 149-159.

    Google Scholar 

  • Ruby SW, Abelson J (1988) An early hierarchic role of U1 small nuclear ribonucleoprotein in spliceosome assembly. Science 242: 1028-1035.

    Google Scholar 

  • Schulman ES, MacGlashan Jr DW, Peters SP, Schleimer RP, Newball HH, Lichtenstein LM (1982) Human lung mast cells: purification and characterization. J Immunol 129: 2662-2667.

    Google Scholar 

  • Schur PH, Moroz LA, Kunkel HG (1967) Precipitating antibodies to ribosomes in the serum of patients with systemic lupus erythematosus. Immunochemistry 4: 447-453.

    Google Scholar 

  • Simons FHM, Pruijn GJM, van Venrooij WJ (1994) Analysis of the intracellular localization and assembly of Ro ribonucleoprotein particles by microinjection into Xenopus laevis oocytes. J Cell Biol 125: 981-988.

    Google Scholar 

  • Singer RH (1992) The cytoskeleton and mRNA localization. Curr Opin Cell Biol 4: 15-19.

    Google Scholar 

  • Singer RH (1993) RNA zipcodes for cytoplasmic addresses. Intracellular localization of mRNAs appears to be determined by sequences in their 30 untranslated regions that are composed of multiple elements. Curr Biol 3: 719-721.

    Google Scholar 

  • Sobel SG, Wolin SL (1999) Two yeast La motif-containing proteins are RNA binding proteins that associate with polyribosomes. Mol Biol Cell 10: 3849-3862.

    Google Scholar 

  • Spector DL, Schrier WH, Busch H (1983) Immunoelectron microscopic localization of SnRNPs. Biol Cell 49: 1-10.

    Google Scholar 

  • St. Clair EW (1992) Anti-La antibodies. Rheum Dis Clin North Am 18: 359-376.

    Google Scholar 

  • St. Johnston D (1995) The intracellular localization of messenger RNAs. Cell 81: 161-170.

    Google Scholar 

  • Steiner G, Skriner K, Smolen JS (1996) Autoantibodies to the A/B proteins of the heterogeneous nuclear ribonucleoprotein complex: novel tools for the diagnosis of rheumatic diseases. Int Arch Allergy Immunol 111: 314-319.

    Google Scholar 

  • Steward O, Levy WB (1982) Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus. J Neurosci 2: 284-291.

    Google Scholar 

  • Tan EM (1991) Autoantibodies in pathology and cell biology. Cell 67: 841-842.

    Google Scholar 

  • White PJ, Hoch SO (1981) Definition of the antigenic polypeptides in the Sm and RNP ribonucleoprotein complexes. Biochem Biophys Res Commun 102: 365-371.

    Google Scholar 

  • White PJ, Billings PB, Hoch SO (1982) ASS-Ays for the Sm and RNP autoantigens: the requirement for RNA and influence of the tissue source. J Immunol 128: 2751-2756.

    Google Scholar 

  • Wilhelm JE, Vale RD (1993) RNA on the move: the mRNA localization pathway. J Cell Biol 123: 269-274.

    Google Scholar 

  • Wolin SL, Steitz JA (1984) The Ro small cytoplasmic ribonucleoproteins: identification of the antigenic protein and its binding site on the Ro RNAs. Proc Natl Acad Sci USA 81: 1996-2000.

    Google Scholar 

  • Yamamoto K, Miura H, Moroi Y, Yoshinoya S, Goto M, Nishioka K, Miyamoto T (1988) Isolation and characterization of a complementary DNA expressing human U1 small nuclear ribonucleoprotein C polypeptide. J Immunol 140: 311-317.

    Google Scholar 

  • Yoo CJ, Wolin SL (1997) The yeast La protein is required for the 30endonucleolytic cleavage that matures tRNA precursors. Cell 89: 393-402.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvorak, A.M., Morgan, E.S. Ultrastructural Immunogold Cytochemistry with Autoimmune Human Sera and an Antibody to Uridine Implicate Human Mast Cell Granules in RNA Biology. Histochem J 32, 685–696 (2000). https://doi.org/10.1023/A:1004119500801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004119500801

Keywords

Navigation