Skip to main content
Log in

Histochemical Differentiation of Autometallographically Traceable Metals (Au, Ag, Hg, Bi, Zn): Protocols for Chemical Removal of Separate Autometallographic Metal Clusters in Epon Sections

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Nano-sized clusters of gold atoms, or alternatively silver, mercury, bismuth, or zinc sulphide/selenide molecules, can be autometallographically silver-enhanced by being placed in a developer containing reducing molecules and silver ions, i.e. an autometallographic developer. A specific recipe has been worked out for each autometallographically traceable metal, and in cases where two or more autometallographic catalysts are present in the same section it is feasible to distinguish one from the other by chemical removal of one or the other of the metals. In the present study we present protocols that allow differentiation and control of specificity of the established autometallographically detectable metals. It is recommended to implement a multi-element analysis, e.g. proton-induced X-ray emission on a few samples to secure the histochemical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaseth J, Olsen A, Halse J, Hovig T (1981) Argyria-tissue deposition of silver as selenide. Scand J Clin Lab Invest 41: 247-251.

    Google Scholar 

  • Brunk U, Brun A (1972) Histochemical evidence for lysosomal uptake of lead in tissue cultured fibroblasts. Histochemie 29: 140-146.

    Google Scholar 

  • Christensen M, Rungby J, Mogensen SC (1989) Effects of selenium on toxicity and ultrastructural localization of mercury in cultured murine macrophages. Toxicol Lett 47: 259-270.

    Google Scholar 

  • Christensen M-K, Frederickson CJ, Danscher G (1992) Retrograde tracing of zinc-containing neurons by selenide ions: A survey of seven selenium compounds. J Histochem Cytochem 40: 575-579.

    Google Scholar 

  • Danscher G (1981a) Histochemical demonstration of heavy metals. A revised version of the sulfide silver method suitable for both light and electron microscopy. Histochemistry 71: 1-16.

    Google Scholar 

  • Danscher G (1981b) Localization of gold in biological tissue. A photochemical method for light and electronmicroscopy. Histochemistry 71: 8l-88.

    Google Scholar 

  • Danscher G (1981c) Light and electron microscopic localisation of silver in biological tissue. Histochemistry 71: 177-186.

    Google Scholar 

  • Danscher G (1982) Exogenous selenium in the brain. A histochemical light and electron microscopical localization of catalytic selenium bonds. Histochemistry 76: 281-293.

    Google Scholar 

  • Danscher G (1983) Asilver method for counterstaining plastic embedded tissue. Stain Technol 58: 365-372.

    Google Scholar 

  • Danscher G (1984) Dynamic changes in the stainability of rat hippocampal mossy fiber boutons after local injection of sodium sulphide, sodium selenite, and sodium diethyldithiocarbamate. In: Frederickson CJ, Howell CJ, Kasarskis E, eds. The Neurobiology of Zinc, Part B. New York: Alan R. Liss, Inc, pp. 177-191.

    Google Scholar 

  • Danscher G (1988) Can aluminium be visualized in CNS by silver amplification? Acta Neuropathol (Berl) 6: 107.

    Google Scholar 

  • Danscher G (1991) Histochemical tracing of zinc, mercury, silver and gold. Prog Histochem Cytochem 23: 273-285.

    Google Scholar 

  • Danscher G (1996) The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles. Histochem J 28: 361-373.

    Google Scholar 

  • Danscher G, Montagnese C (1994) Autometallographic localization of synaptic vesicular zinc and lysosomal gold, silver and mercury. J Histotechnol 17: 15-22.

    Google Scholar 

  • Danscher G, Møller-Madsen B (1985) Silver amplification of mercury sulfide and selenide: a histochemical method for light and electron microscopic localization of mercury in tissue. J Histochem Cytochem 33: 219-228.

    Google Scholar 

  • Danscher G, Nørgaard JOR (1983) Light microscopic visualization of colloidal gold on resin-embedded tissue. J Histochem Cytochem 31: 1394-1398.

    Google Scholar 

  • Danscher G, Rungby J (1986) Differentiation of histochemically visualized mercury and silver. Histochem J 18: 109-114.

    Google Scholar 

  • Danscher G, Haug F-MS, Fredens K (1973) Effect of diethyldithiocarbamate (DEDTC) on sulphide silver stained boutons. Reversible blocking of Timm's sulphide silver stain for “heavy” metals in DEDTC treated rats (light microscopy). Exp Brain Res 16: 521-532.

    Google Scholar 

  • Danscher G, Jensen KB, Kraft J, Stoltenberg M (1997a) Autometallographic silver enhancement of submicroscopic metal containing catalytic crystallites-Ahistochemical tool for detection of gold, silver, bismuth, mercury, and zinc. Cell Vision 4: 375-386.

    Google Scholar 

  • Danscher G, Juhl S, Stoltenberg M, Krunderup B, Schrøder HD, Andreasen A (1997b) Autometallographic silver enhancement of zinc sulfide crystals created in cryostat sections from human brain biopsies. A new technique that makes it feasible to demonstrate zinc ions in tissue sections from biopsies and early autopsy material. J Histochem Cytochem 45: 1503-1510.

    Google Scholar 

  • Danscher G, Stoltenberg M, Kemp K, Pamphlett R (2000) Bismuth autometallography: protocol-specificity differentiation. J Histochem Cytochem 48: 1503-1510.

    Google Scholar 

  • Domouhtsidou GP, Dimitriadis VK (2000) Ultrastructural localization of heavy metals (Hg, Ag, Pb, and Cu) in gills and digestive gland of mussels, Mytilus galloprovincialis (L.). Arch Environ Contam Toxicol 38: 472-478.

    Google Scholar 

  • Holgate CS, Jackson P, Cowen PN, Bird CC (1983) Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. J Histochem Cytochem 31: 938-944.

    Google Scholar 

  • Howell GA, Frederickson CJ, Danscher G (1989) Evidence from dithizone and selenium zinc histochemistry that perivascular mossy fiber boutons stain preferentially “in vivo”. Histochemistry 92: 121-125.

    Google Scholar 

  • Iwata H, Okamoto H, Ohsawa Y (1973) Effect of selenium on methylmercury poisoning. Res Commun Chem Pathol Pharmacol 5: 673-680.

    Google Scholar 

  • Liesegang RE (1911) Die Kolloidchemie der histologischen Silberfärbungen. In Kolloidchemische Beihefte (Ergänzungshefte zur Kolloid-Zeifschrift) Ostwald W, ed., Dresden-Leipzig: Verlag von Theodor Steinkopff, pp. 1-44.

    Google Scholar 

  • Liesegang RE, Rieder W (1921) Versuche mit einer “Keimmethode” zum Nachweis von Silber in Gewebsschnitten. ZWiss Mikrosk 38: 334-338.

    Google Scholar 

  • Lormée P, Lecolle S, Septier D, Le Denmat D, Goldberg M (1989) Autometallography for histochemical visualization of rat incisor polyanions with cuprolinic blue. J Histochem Cytochem 37: 203-208.

    Google Scholar 

  • Møller-Madsen B, Danscher G (1991) Localization of mercury in CNS of the rat. IV. The effect of selenium on orally administered organic and inorganic mercury. Toxicol Appl Pharmacol 108: 457-473.

    Google Scholar 

  • Ohi G, Nishigaki S, Seki H, Tamura Y, Maki T, Konno H, Setsuko O, Yamada H, Shimamura Y, Mizoguchi I, Yagyu H (1976) Efficacy of selenium in tuna and selenite in modifying methylmercury intoxication. Environ Res 12: 49-58.

    Google Scholar 

  • Pamphlett R, Stoltenberg M, Rungby J, Danscher G (2000) Uptake of bismuth in motor neurons of mice after single oral doses of bismuth compounds. Neurotoxicol Teratol 22: 559-563.

    Google Scholar 

  • Parizek J, Ostadalova I (1967) The protective effect of small amounts of selenite in sublimate intoxication. Experientia 23: 143.

    Google Scholar 

  • Roberts WJ (1935) A new procedure for detection of gold in animal tissue. Proc R Acad (Amsterdam) 38: 540-544.

    Google Scholar 

  • Ross JF, Switzer RC, Poston MR, Lawhorn GT (1996) Distribution of bismuth in the brain after intraperitoneal dosing of bismuth subnitrate in mice: implications for routes of entry of xenobiotic metals into the brain. Brain Res 725: 137-154.

    Google Scholar 

  • Rungby J (1987) Silver-induced lipid-peroxidation: Interactions with selenium and nickel. Toxicology 45: 135-142.

    Google Scholar 

  • Rungby J, Danscher G (1983) Localization of exogenous silver in brain and spinal cord of silver exposed rats. Acta Neuropathol (Berl.) 60: 92-98.

    Google Scholar 

  • Rungby J, Ellermann-Eriksen S, Danscher G (1987) Effects of selenium on toxicity and ultrastructural localization of silver in cultured macrophages. Arch Toxicol 61: 40-45.

    Google Scholar 

  • Schiønning JD, Danscher G, Christensen MM, Ernst E, Møller-Madsen B (1993) Differentiation of silver-enhanced mercury and gold in tissue sections. J Histochem 25: 107-111.

    Google Scholar 

  • Schiønning JD, Eide R, Ernst E, Danscher G, Møller-Madsen B (1997) The effect of selenium on the localization of autometallographic mercury in dorsal root ganglia of rats. Histochem J 29: 183-191.

    Google Scholar 

  • Shirabe T (1978) Electron microscopic X-ray microanalysis of the nervous system after mercury intoxication. Folia Psychiatr Neurol Jpn 32: 278-283.

    Google Scholar 

  • Soto M, Cajaraville MP, Marigomez I (1996) Tissue and cell distribution of copper, zinc and cadmium in the mussel, Mytilusgalloprovincialis, determined by autometallography. Tissue Cell 28: 557-568.

    Google Scholar 

  • Stoltenberg M, Danscher G, Pamphlett R, Christensen MM, Rungby J (2000) Histochemical tracing of bismuth in testis from rats exposed intraperitoneally to bismuth subnitrate. Reprod Toxicol 14: 65-71.

    Google Scholar 

  • Sundelin S, Wihlmark U, Nilsson SE, Brunk UT (1998) Lipofuscin accumulation in cultured retinal pigment epithelial cells reduces their phagocytic capacity. Curr Eye Res 17: 851-857.

    Google Scholar 

  • Terman A, Brunk UT (1998) Lipofuscin: mechanisms of formation and increase with age. APMIS 106: 265-276.

    Google Scholar 

  • Timm F (1958) Zur Histochemie der Schwermetalle. Das Sulfid-Silberverfahren. Dtsch Z Gerichtl Med 46: 706-711.

    Google Scholar 

  • Timm F (1962) Histochemische Lokalisation und Nachweis der Schwermetalle. Acta Histochem (Suppl.) 3: 142-158.

    Google Scholar 

  • Voigt GE (1959) Unterschungen mit der Sulfidsilbermethode an menschlichen und tierischen Bauchspeicheldrüsen. Virchows Arch Path Anat 332: 295-323.

    Google Scholar 

  • Yuan XM (1999) Apoptotic macrophage-derived foam cells of human atheromas are rich in iron and ferritin, suggesting iron-catalysed reactions to be involved in apoptosis. Free Radic Res 30: 221-231.

    Google Scholar 

  • Zdolsek JM, RobergK, Brunk UT (1993) Visualization of iron in cultured macrophages: a cytochemical light and electron microscopic study using autometallography. Free Radic Biol Med 15: 1-11.

    Google Scholar 

  • Zeiger K (1938) Physikochemische Grundlagen der histologischen Methodik. Wiss Forschungsber 48: 55-105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoltenberg, M., Danscher, G. Histochemical Differentiation of Autometallographically Traceable Metals (Au, Ag, Hg, Bi, Zn): Protocols for Chemical Removal of Separate Autometallographic Metal Clusters in Epon Sections. Histochem J 32, 645–652 (2000). https://doi.org/10.1023/A:1004115130843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004115130843

Keywords

Navigation