Skip to main content
Log in

Predation by juvenile Platichthys flesus (L.) on shelled prey species in a bare sand and a drift algae habitat

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Due to increasing eutrophication of the coastal Baltic waters, drifting algae are a common phenomenon. Drifting algal mats accumulate on shallow sandy bottoms in late summer and autumn, and affect the ambient fauna. Juvenile flounder, Platichthys flesus, utilize these habitats during their first few years. They feed on benthic meio- and macrofauna; part of their diet consists of shelled species, such as Ostracods, and juvenile Hydrobia spp. and Macoma balthica. Earlier studies have shown that up to 75% of ostracods and 92% of hydrobiids survive the gut passage of juvenile flounder, while all M. balthica are digested by the fish. We conducted laboratory experiments to study how the shelled prey responded to a drift algal mat, and the predation efficiency of juvenile P. flesus on these prey species on bare sand and with drifting algae (50% coverage). Hydrobia spp. utilized the drift algae as a habitat and, after 1 h, 50% had moved into the algae; ostracods and M. balthica were more stationary and, after 96 h, only 23 and 12%, respectively, were found in the algae. For the predation efficiency of P. flesus, a two-way ANOVA with habitat (algae, bare sand) and predation (fish, no fish) as factors revealed that both algae and predation affected negatively the survival of all three prey species. The algae, thus, affected the predation efficiency of juvenile P. flesus and the consumption of prey was much reduced in the algal treatments compared to the bare sand. This was due probably to increased habitat complexity and the ability of prey, especially hydrobiids, to use the algal mat as a refuge. Altered habitat structure due to drift algae, together with the resultant changes in habitat (refuge) value for different prey species, may profoundly change the structure of benthic communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnio, K. & E. Bonsdorff, 1997. Passing the gut of juvenile flounder, Platichthys flesus: differential survival of zoobenthic prey species. Mar. Biol. 129: 11–14.

    Google Scholar 

  • Aarnio, K., E. Bonsdorff & A. Norkko, 1998. Role of Halicryptus spinulosus (Priapulida) in structuring meiofauna and settling macrofauna. Mar. Ecol. Prog. Ser. 163: 145–153.

    Google Scholar 

  • Aarnio, K., E. Bonsdorff & N. Rosenback, 1996. Food and feeding habits of juvenile flounder, Platichthys flesus (L.), and turbot, Scophthalmus maximus L., in the Åland archipelago, northern Baltic Sea. J. Sea Res. 36: 311–320.

    Google Scholar 

  • Aneer, G., 1987. High natural mortality of Baltic herring (Clupea harengus) eggs caused by algal exudates? Mar. Biol. 94: 163–169.

    Google Scholar 

  • Ansell, A. & R. N. Gibson, 1990. Patterns of feeding and movement of juvenile flatfishes on an open sandy beach. In Barnes M. & R. N. Gibson (eds), Trophic Relationships in the Marine Environment. Proc. 24th Europ. Mar. Biol. Symp. Aberdeen University Press: 191–207.

  • Berglund, J., 1998. Survey of macrophytes and drifting algae on shallow soft bottoms in the Åland archipelago. Forskningsrapporter från Husö biologiska station 97: 1–29 (in Swedish with English summary).

    Google Scholar 

  • Bonsdorff, E., 1992. Drifting algae and zoobenthos-effects of settling and community structure. Neth. J. Sea Res. 30: 57–62.

    Google Scholar 

  • Bonsdorff, E., K. Aarnio & E. Sandberg, 1991. Temporal and spatial variability of zoobenthic communities in archipelago waters of the northern Baltic Sea-consequences of eutrophication. Int. Rev. ges. Hydrobiol. 76: 433–450.

    Google Scholar 

  • Bonsdorff, E., A. Norkko & C. Boström, 1995. Recruitment and population maintenance of the bivalve Macoma balthica (L.)-factors affecting settling success and early survival on shallow sandy bottoms. In Eleftheriou, A., A. D. Ansell & C. J. Smith (eds), Biology and Ecology of Shallow Coastal Waters. Proc. 28th Europ. Mar. Biol. Symp. Olsen & Olsen, Fredensborg: 253–260.

    Google Scholar 

  • Bonsdorff, E., E. M. Blomqvist, J. Mattila & A. Norkko, 1997a. Coastal eutrophication: causes, consequences and perspectives in the archipelago areas of the northern Baltic Sea. Estuar coast. shelf Sci. 44 (Suppl. A): 63–72.

    Google Scholar 

  • Bonsdorff, E., E. M. Blomqvist, J. Mattila & A. Norkko, 1997b. Long-term changes and coastal eutrophication. Examples from the Åland Islands and the Archipelago Sea, northern Baltic Sea. Oceanol. Acta 20: 319–329.

    Google Scholar 

  • Cadee, G. C., 1994. Eider, shelduck and other predators, the main producers of shell fragments in the Wadden Sea: Palaeoecological implications. Palaeontology 37: 181–202.

    Google Scholar 

  • Cederwall, H. & R. Elmgren, 1990. Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio 19: 109–112.

    Google Scholar 

  • Coull, B. C. & J. B. J. Wells, 1983. Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64: 1599–1609.

    Google Scholar 

  • De Groot, S. J., 1971. On the interrelationships between morphology of the alimentary tract, food and feeding behaviour in flatfishes (Pisces: Pleuronectiformes). Neth. J. Sea Res. 5: 121–196.

    Google Scholar 

  • Gotceitas, V. & P. Colgan, 1989. Predator foraging success and habitat complexity: quantitative test of the threshold hypothesis. Oecologia 80: 158–166.

    Google Scholar 

  • Heck, K. L., Jr. & T. A. Thoman, 1981. Experiments on predator prey interactions in vegetated aquatic habitats. J. exp. mar. Biol. Ecol. 53: 125–134.

    Google Scholar 

  • Hull, S. C., 1987. Macroalgal mats and species abundance: a field experiment. Estuar. coast. shelf Sci. 25: 519–532.

    Google Scholar 

  • Isaksson, I., L. Pihl & J. Van Montfrans, 1994. Eutrophicationrelated changes in macrovegetation and foraging of young cod (Gadus morhua L.): a mesocosm experiment. J. exp. mar. Biol. Ecol. 177: 203–217.

    Google Scholar 

  • James, P. L. & K. L. Heck Jr., 1994. The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J. exp. mar. Biol. Ecol. 176: 187–200.

    Google Scholar 

  • Larsson, U., R. Elmgren & F. Wulff, 1985. Eutrophication and the Baltic Sea: causes and consequences. Ambio 14: 9–14.

    Google Scholar 

  • Levinton, J. S., 1985. Complex interactions of a deposit feeder with its resources: roles of density, a competitor and detrital addition in the growth and survival of the mudsnail Hydrobia totteni. Mar. Ecol. Prog. Ser. 22: 31–40.

    Google Scholar 

  • Mattila, J., 1992. The effect of habitat complexity on predation efficiency of perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)). J. exp. mar. Biol. Ecol. 157: 55–67.

    Google Scholar 

  • Mattila, J. & E. Bonsdorff, 1998. Predation by juvenile flounder (Platichthys flesus L.): a test of prey vulnerability, predator preference, switching behaviour and functional response. J. exp. mar. Biol. Ecol. 227: 221–236.

    Google Scholar 

  • Mbahinzireki, G., F. Uiblein & H. Winkler, 1991. Microhabitat selection of ostracods in relation to predation and food. Hydrobiologia 222: 115–119.

    Google Scholar 

  • Nelson, W. G., 1979. Experimental studies of selective predation on amphipods: consequences for amphipod distribution and abundance. J. exp. mar. Biol. Ecol. 38: 225–245.

    Google Scholar 

  • Nelson, W. G. & E. Bonsdorff, 1990. Fish predation and habitat complexity: are complexity thresholds real? J. exp. mar. Biol. Ecol. 141: 183–194.

    Google Scholar 

  • Norkko, A., 1997. The role of drifting macroalgal mats in structuring coastal zoobenthos. PhD Thesis, Åbo Akademi University, 41 pp.

  • Norkko, A., 1998. The impact of loose-lying algal mats and predation by the brown shrimp Crangon crangon (L.) on infaunal prey dispersal and survival. J. exp. mar. Biol. Ecol. 221: 99–116.

    Google Scholar 

  • Norkko, A. & E. Bonsdorff, 1996a. Population responses of coastal zoobenthos to stress induced by drifting algal mats. Mar. Ecol. Prog. Ser. 140: 141–151.

    Google Scholar 

  • Norkko, A. & E. Bonsdorff, 1996b. Altered benthic prey-availability due to episodic oxygen deficiency caused by drifting algal mats. P.S.Z.N.I Mar. Ecol. 17: 355–372.

    Google Scholar 

  • Norkko, J., E. Bonsdorff & A. Norkko, 2000. Drifting algal mats as an alternative habitat for benthic invertebrates: species specific responses to a transient resource. J. exp. mar. Biol. Ecol. 248: 79–104.

    Google Scholar 

  • Olafsson, E. B., 1988. Inhibition of larval settlement to a soft bottom benthic community by drifting algal mats: an experimental test. Mar. Biol. 97: 571–574.

    Google Scholar 

  • Orth, R. J., K. L. Heck Jr. & J. Van Montfrans, 1984. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator prey relationships. Estuaries 7: 339–350.

    Google Scholar 

  • Pierce, C. L., 1988. Predator avoidance, microhabitat shift, and risk-sensitive foraging in larval dragonflies. Oecologia 77: 81–90.

    Google Scholar 

  • Pyke, G. H., H. R. Pulliam & E. L. Charnov, 1977. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52: 137–154.

    Google Scholar 

  • Raffaelli, D. G., J. A. Raven & L. J. Poole, 1998. Ecological impact of green macroalgal blooms. Oceanogr. mar. biol. Annu. Rev. 36: 97–125.

    Google Scholar 

  • Savino, J. F. & R. A. Stein, 1982. Predator-prey interaction between largemouth bass and bluegills as influenced by simulated submersed vegetation. Trans. am. Fish. Soc. 111: 255–266.

    Google Scholar 

  • Savino, J. F. & R. A. Stein, 1989. Behavior of fish predators and their prey: habitat choice between open water and dense vegetation. Envir. Biol. Fishes 24: 287–293.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W.H. Freeman and Company, New York: 887 pp.

    Google Scholar 

  • Uiblein, F., J. R. Roca, A. Baltanas & D. L. Danielopol, 1996. Tradeoff between foraging and antipredator behaviour in a macrophyte dwelling ostracod. Arch. Hydrobiol. 137: 119–133.

    Google Scholar 

  • Vinyard, G., 1979. An ostracod (Cypriodopsis vidua) can reduce predation from fish by resisting digestion. Am. midl. Nat. 102: 188–190.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarnio, K., Mattila, J. Predation by juvenile Platichthys flesus (L.) on shelled prey species in a bare sand and a drift algae habitat. Hydrobiologia 440, 347–355 (2000). https://doi.org/10.1023/A:1004112304096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004112304096

Navigation