Skip to main content
Log in

Physical control of plankton population abundance and dynamics in intertidal rock pools

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Little is known about the population structure and dynamics of plankton of intertidal rock pools. A numerical model was developed for rock pool plankton with growth limited by both tidal washout and the stress associated with adverse conditions in high-shore pools. This model predicts that a stress tolerant species will tend to have maximum population densities in high-shore pools and that populations will fluctuate in opposite phase to the spring-neap tidal cycle. Conversely, where a species is susceptible to stress in high-shore pools, the maximum population density is likely to occur lower on the shore, and numbers in upper shore pools will cycle in phase with the spring-neap cycle. These two alternative predictions were sufficient to classify the dynamics of the most abundant species in time series taken from rock pools in the Isle of Man. The dinoflagellate Oxyrrhis marina followed the predictions of the stress tolerant model. In comparison, the spatiotemporal patterns of other taxa, including a ciliate, a dinoflagellate and cryptophytes, suggested stress-susceptible life histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begon, M., J. L. Harper & C. R. Townsend, 1996. Ecology. Individuals, Populations and Communities. Blackwell Science, Oxford: 1068 pp.

    Google Scholar 

  • Blackwell, J. R. & D. J. Gilmour, 1991. Stress tolerance of the tidal pool chlorophyte Chlorococcum submarinum. Brit. J. Phycol. 26: 141–147.

    Google Scholar 

  • Chatfield, C., 1996. The Analysis Of Time Series. An Introduction. 5th Edition. Chapman and Hall, London: 283 pp.

    Google Scholar 

  • Cousens, R., 1988. Misinterpretations of results in weed research through inappropriate use of statistics. Weed Res. 28: 281–289.

    Google Scholar 

  • Dawkins, H. C., 1983. Multiple comparisons misused: why so frequently in response curve studies? Biometrics 39: 789–790.

    Google Scholar 

  • Dethier, M. N., 1980. Tidepools as refuges: predation and the limits of the harpacticoid copepod Tigriopus californicus (Baker). J. exp. mar. Biol. Ecol. 42: 99–111.

    Google Scholar 

  • Droop, M. R., 1953. On the ecology of flagellates from some brackish and fresh water rockpools of Finland. Acta bot. fenn. 51: 3–52.

    Google Scholar 

  • Droop, M. R., 1970. Nutritional investigation of phagotrophic Protozoa under axenic conditions. Helgoländer Meeresunters. 20: 272–277.

    Google Scholar 

  • Faure-Fremiet, E., 1948. The ecology of some infusorian communities of intertidal pools. J. anim. Ecol. 17: 127–130.

    Google Scholar 

  • Harris, G. P. & A. M. Trimbee, 1986. Phytoplankton population dynamics of a small reservoir: physical/biological coupling and the time scales of community change. J. Plankton Res. 8: 1011–1025.

    Google Scholar 

  • Hasle, G. R., 1976. The inverted microscope method. In Sournia, A. (ed.), Phytoplankton Manual. Monographs on Oceanographic Methodology 6. UNESCO, Paris: 88–96.

    Google Scholar 

  • Jonsson, P. R., 1994. Tidal rhythm of cyst formation in the rock pool ciliate Strombidium oculatum Gruber (Ciliophora, Oligotrichida): a description of the functional biology and an analysis of the tidal synchronization of encystment. J. exp. mar. Biol. Ecol. 175: 77–103.

    Google Scholar 

  • Metaxas, A. & A. G. Lewis, 1992. Diatom communities of tidepools: the effect of intertidal height. Bot. Mar. 35: 1–10.

    Google Scholar 

  • Metaxas, A. & R. E. Scheibling, 1993. Community structure and organization of tidepools. Mar. Ecol. Prog. Ser. 98: 187–198.

    Google Scholar 

  • Metaxas, A. & R. E. Scheibling, 1996. Spatial heterogeneity of phytoplankton assemblages in tidepools: effects of abiotic and biotic factors. Mar. Ecol. Prog. Ser. 130: 179–199.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford: 173 pp.

    Google Scholar 

  • Perry, J. N., 1986. Multiple comparison procedures: a dissenting view. J. econ. Entomol. 79: 1149–1155.

    Google Scholar 

  • Pfister, C. A., 1998. Extinction, colonization and species occupancy in tidepool fishes. Oecologia 114: 118–126.

    Google Scholar 

  • Powlik, J. J., 1998. Seasonal abundance and population flux of Tigriopus californicus (Copepoda: Harpacticoida) in Barkley Sound, British Columbia. J. mar. biol. Ass. U.K 78: 467–481.

    Google Scholar 

  • Sephton, D. H. & G. P. Harris, 1984. Physical variability and phytoplankton communities: VI. Day to day changes in primary productivity and species abundance. Arch. Hydrobiol. 102: 155–175.

    Google Scholar 

  • Southward, A. J., 1953. The ecology of some rocky shores in the South of the Isle of Man. Proc. Transact. Liverpool Biol. Soc. 59: 1–50.

    Google Scholar 

  • Underwood, A. J. & G. A. Skilleter, 1996. Effects of patch size on the structure of assemblages in rock pools. J. exp. mar. Biol. Ecol. 197: 63–90.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.P. Physical control of plankton population abundance and dynamics in intertidal rock pools. Hydrobiologia 440, 145–152 (2000). https://doi.org/10.1023/A:1004106808213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004106808213

Navigation