Annals of the Institute of Statistical Mathematics

, Volume 51, Issue 4, pp 691–706

Multivariate Local Polynomial Fitting for Martingale Nonlinear Regression Models

  • Zhan-Qian Lu
Article

Abstract

Local polynomial modelling is a useful tool for nonlinear time series analysis. For nonlinear regression models with martingale difference errors, this paper presents a simple proof of local linear and local quadratic fittings under apparently minimal short-range dependence condition. Explicit formulae for the asymptotic bias and asymptotic variance are given, which facilitate numerical evaluations of these important quantities. The general theory is applied to nonparametric partial derivative estimation in nonlinear time series. A bias-adjusted method for constructing confidence intervals for first-order partial derivatives is described. Two examples, including the sunspots data, are used to demonstrate the use of local quadratic fitting for modelling and characterizing nonlinearity in time series data.

Partial derivative estimation nonlinearity in time series confidence intervals nonparametric estimation sunspots data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Castellana, J. V. and Leadbetter, M. R. (1986). On smoothed probability density estimation for stationary processes, Stochastic. Process. Appl., 21, 179–193.Google Scholar
  2. Fan, J. and Gijbel, I. (1996). Local Polynomial Modelling and Its Applications, Chapman and Hall, London.Google Scholar
  3. Härdle, W. and Tsybakov, A. (1997). Local polynomial estimators of the volatility function in nonparametric autoregression, J. Econometrics, 81, 223–242.Google Scholar
  4. Härdle, W., Tsybakov, A. and Yang, L. (1996). Nonparametric vector autoregression, Working Papers, No. 61, Humboldt University, Berlin.Google Scholar
  5. Lu, Z. Q. (1996). Multivariate locally weighted polynomial fitting and partial derivative estimation, J. Multivariate Anal., 59, 187–205.Google Scholar
  6. Masry, E. (1996). Multivariate regression estimation: local polynomial fitting for time series, Stochastic. Process. Appl., 65(1), 81–101.Google Scholar
  7. Masyr, E. and Fan, J. (1997). Local polynomial estimation of regression functions for mixing processes, Scand. J. Statist., 24(2), 165–179.Google Scholar
  8. Mills, T. C. (1993). The Econometric Modelling of Financial Time Series, Cambridge University Press, Cambridge.Google Scholar
  9. Nychka, D., Ellner, S., McCaffrey, D., and Gallant, A. R. (1992). Finding chaos in noisy systems, J. Roy. Statist. Soc. Ser. B, 54 (2), 399–426.Google Scholar
  10. Priestley, M. B. (1988). Non-linear and Non-stationary Time Series Analysis, Academic Press, London.Google Scholar
  11. Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression, Ann. Statist., 22(3), 1346–1370.Google Scholar
  12. Shiryayev, A. N. (1984). Probability, Springer, New York.Google Scholar
  13. Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach, Oxford University Press, Oxford.Google Scholar
  14. Welsh, A. H. (1996). Robust estimation of smooth regression and spread functions and their derivatives, Statist. Sinica, 6, 347–366.Google Scholar

Copyright information

© The Institute of Statistical Mathematics 1999

Authors and Affiliations

  • Zhan-Qian Lu
    • 1
  1. 1.Department of MathematicsThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations