Skip to main content
Log in

Human L1 retrotransposition: insights and peculiarities learned from a cultured cell retrotransposition assay

  • Published:
Genetica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Long Interspersed Nuclear Elements (L1s or LINEs) are the most abundant retrotransposons in the human genome, and they comprise approximately 17% of DNA. L1 retrotransposition can be mutagenic, and deleterious insertions both in the germ-line and in somatic cells have resulted in disease. Recently, an assay was developed to monitor L1 retrotransposition in cultured human cells. This assay, for the first time, now allows for a systematic study of L1 retrotransposition at the molecular level. Here, I will review progress made in L1 biology during the past three years. In general, I will limit the discussion to studies conducted on human L1s. However, interesting parallels to rodent L1s and other non-LTR retrotransposons also will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves, G., A. Tatro & T. Fanning, 1996. Differential methylation of human LINE-1 retrotransposons in malignant cells. Gene 17: 39–44.

    Article  Google Scholar 

  • Bender, J. & N. Kleckner, 1986. Genetic evidence that Tn10 transposes by a nonreplicative mechanism. Cell 45: 801–815.

    Article  PubMed  CAS  Google Scholar 

  • Boeke, J.D., 1997. LINEs & Alus — the polyA connection [news; comment]. Nat Gene 16: 6–7.

    Article  CAS  Google Scholar 

  • Boeke, J.D. & V.G. Corces, 1989. Transcription and reverse transcription of retrotransposons. [Review]. Annu Rev Microbiol 43: 403–434.

    Article  PubMed  CAS  Google Scholar 

  • Boeke, J.D., D.J. Garfinkel, C.A. Styles & G.R. Fink, 1985 Ty elements transpose through an RNA intermediate. Cell 40: 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Branciforte, D. & S.L. Martin, 1994. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol Cell Biol 14: 2584–2592.

    PubMed  CAS  Google Scholar 

  • Bratthauer, G.L. & T.G. Fanning, 1992. Active LINE-1 retrotransposons in human testicular cancer. Oncogene 7: 507–510.

    PubMed  CAS  Google Scholar 

  • Bratthauer, G.L. & T.G. Fanning, 1993. LINE-1 retrotransposon expression in pediatric germ cell tumors. Cancer 71: 2383–2386.

    Article  PubMed  CAS  Google Scholar 

  • Carignani, G., O. Groudinsky, D. Frezza, E. Schiavon, E. Bergantino et al., 1983. An mRNA maturase is encoded by the first intron of the mitochondrial gene for the subunit I of cytochrome oxidase in S. cerevisiae. Cell 35: 733–742.

    Article  PubMed  CAS  Google Scholar 

  • Clements, A.P. & M.F. Singer, 1998. The human LINE-1 reverse transcriptase: effect of deletions outside the common reverse transcriptase domain. Nucl Acids Res 26: 3528–3535.

    Article  PubMed  CAS  Google Scholar 

  • Colgan, D.F. & J.L. Manley, 1997. Mechanism and regulation of mRNA polyadenylation. Gen Dev 11: 2755–2766.

    CAS  Google Scholar 

  • Cost, G.J. & J.D. Boeke, 1998. Targeting of human retrotransposon integration is directed by the specificity of L1 endonuclease for regions of unusual DNA structure. Biochemistry 37: 18081–18093.

    Article  PubMed  CAS  Google Scholar 

  • DeBerardinis, R.J., J.L. Goodier, E.M. Ostertag & H.H. Kazazian, Jr., 1998. Rapid amplification of a retrotransposon subfamily is evolving the mouse genome. Nat Genet 20: 288–290.

    Article  PubMed  CAS  Google Scholar 

  • Deininger, P.L. & M.A. Batzer, 1999. Alu repeats and human disease. Mol Genet Metab 67: 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Divoky, V., K. Indra, M. Mrug, V. Brabec, T.H.J. Huisman et al., 1996. A novel mechanism of β-thalessemia. The insertion of L1 retrotransposable element into β globin IVSII. Blood 88: 148a.

    Google Scholar 

  • Dombroski, B.A., Q. Feng, S.L. Mathias, D.M. Sassaman, A.F. Scott et al., 1994. An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cerevisiae. Mol Cell Biol 14: 4485–4492.

    PubMed  CAS  Google Scholar 

  • Dombroski, B.A., S.L. Mathias, E. Nanthakumar, A.F. Scott & H. Kazazian, Jr., 1991. Isolation of an active human transposable element. Science 254: 1805–1808.

    PubMed  CAS  Google Scholar 

  • Dombroski, B.A., A.F. Scott & H. Kazazian, Jr., 1993. Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc Natl Acad Sci USA 90: 6513–6517.

    Article  PubMed  CAS  Google Scholar 

  • Fanning, T. & M. Singer, 1987. The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins. Nucl Acids Res 15: 2251–2260.

    PubMed  CAS  Google Scholar 

  • Feng, Q., J.V. Moran, H.H. Kazazian & J.D. Boeke, 1996. Human L1 retrotransposon encodes a conserved endonuclease required fo retrotransposition. Cell 87: 905–916.

    Article  PubMed  CAS  Google Scholar 

  • Feng, Q., G. Schumann & J.D. Boeke, 1998. Retrotransposon R1Bm endonuclease cleaves the target sequence. Proc Natl Acad Sci USA 95: 2083–2088.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, J.D., N.L. Goodchild & D.L. Mager, 1994. A modified indicator gene for selection of retrotransposition events in mammalian cells. Bio Techniques 17: 47–52.

    Google Scholar 

  • Gilbert, N. & D. Labuda, 1999. CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs. Proc Natl Acad Sci USA 96: 2869–2874.

    Article  PubMed  CAS  Google Scholar 

  • Goodier, J.L., E.M. Ostertag & H.H. Kazazian, 2000. Transduction of 3′ flanking sequences is common in L1 retrotransposition. Hum Molec Genetics, 9: 653–657.

    Article  CAS  Google Scholar 

  • Grimaldi, G., J. Skowronski & M.F. Singer, 1984. Defining the beginning and end of KpnI family segments. EMBO J 3: 1753–1759.

    PubMed  CAS  Google Scholar 

  • Hohjoh, H. & M.F. Singer, 1996. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 15: 630–639.

    PubMed  CAS  Google Scholar 

  • Hohjoh, H. & M.F. Singer, 1997. Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 16: 6034–6043.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, S.E., B.A. Dombroski, C.M. Krebs, C.D. Boehm & H.H. Kazazian, Jr., 1994. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet 7: 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, S.E., M.F. Singer & G.D. Swergold, 1992. Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. J Biol Chem 267: 19765–19768.

    PubMed  CAS  Google Scholar 

  • Hutchison, C.A., S.C. Hardies, D.D. Loeb, W.R. Shehee & M.H. Edgell, 1989. LINES and related retroposons: long interspersed sequences in the eucaryotic genome, pp. 593–617 in Mobile DNA, edited by D.E. Berg & M.M. Howe. ASM Press, Washington, DC.

    Google Scholar 

  • Jurka, J. 1997. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA 94: 1872–1877.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian, H.H., Jr., 1998. Mobile elements and disease. Curr Opin Genet Dev 8: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian, H.H., 1999. An estimated frequency of endogenous insertional mutations in humans. Nat Genet 22: 130.

    Article  PubMed  CAS  Google Scholar 

  • Kazazian, H.H. & J.V. Moran, 1998. The impact of L1 retrotransposons on the human genome. Nat Genet 19: 19–24.

    PubMed  CAS  Google Scholar 

  • Kazazian, H.H., Jr., C. Wong, H. Youssoufian, A.F. Scott, D.G. Phillips et al., 1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332: 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Kennell, J.C., J.V. Moran, P.S. Perlman, R.A. Butow & A.M. Lambowitz, 1993. Reverse transcriptase activity associated with maturase-encoding group II introns in yeast mitochondria. Cell 73: 133–146.

    Article  PubMed  CAS  Google Scholar 

  • Kimberland, M.L., V. Divoky, J. Prchal, U. Schwahn, W. Berger et al., 1999. Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8: 1557–1560.

    Article  PubMed  CAS  Google Scholar 

  • Kingsmore, S.F., B. Giros, D. Suh, M. Bieniarz, M.G. Caron et al., 1994. Glycine receptor b-subunit gene mutation in spastic mouse associated with LINE-1 element insertion. Nat Genet 7: 136–142.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner, N., 1990. Regulation of transposition in bacteria. Annu Rev Cell Biol 6: 297–327.

    Article  PubMed  CAS  Google Scholar 

  • Kolosha, V.O. & S.L. Martin, 1997. In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein formation during retrotransposition. Proc Natl Acad Sci USA 94: 10155–10160.

    Article  PubMed  CAS  Google Scholar 

  • Korenberg, J.R. & M.C. Rykowski, 1988. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53: 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Kuiper, M.T. & A.M. Lambowitz, 1988. A novel reverse transcriptase activity associated with mitochondrial plasmids of Neurospora [published erratum appears in Cell 1989 Jan 13;56(1): following 139]. Cell 55: 693–704.

    Article  PubMed  CAS  Google Scholar 

  • Kurose, K., K. Hata, M. Hattori & Y. Sakaki, 1995. RNA polymerase III dependence of the human L1 promoter and possible participation of the RNA polymerase II factor YY1 in the RNA polymerase III transcription system. Nucl Acids Res 23: 3704–3709.

    PubMed  CAS  Google Scholar 

  • Lampson, B.C., S. Inouye & M. Inouye, 1991. msDNA of bacteria. [Review]. Prog Nucleic Acid Res Mol Biol 40: 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Lazowska, J., B. Meunier & C. Macarde, 1994. Homing of a group II intron in yeast mitochondrial DNA is accompanied by unidirectional co-conversion of upstream-located markers. EMBO J. 13: 4963–4972.

    PubMed  CAS  Google Scholar 

  • Leibold, D.M., G.D. Swergold, M.F. Singer, R.E. Thayer, B.A. Dombroski et al., 1990. Translation of LINE-1 DNA elements in vitro and in human cells. Proc Natl Acad Sci USA 87: 6990–6994.

    Article  PubMed  CAS  Google Scholar 

  • Luan, D.D., M.H. Korman, J.L. Jakubczak & T.H. Eickbush, 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Martin, F., C. Maranon, M. Olivares, C. Alonso & M.C. Lopez, 1995. Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzymes. J Mol Biol 247: 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S.L., 1991. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 11: 4804–4807.

    PubMed  CAS  Google Scholar 

  • Martin, S.L., 1994. Characterization of a LINE-1 cDNA that originated from RNA present in ribonucleoprotein particles: implications for the structure of an active mouse LINE-1. Gene 153: 261–266.

    Article  Google Scholar 

  • Mathias, S.L., A.F. Scott, H.H. Kazazian, Jr., J.D. Boeke & A. Gabriel, 1991. Reverse transcriptase encoded by a human transposable element. Science 254: 1808–1810.

    PubMed  CAS  Google Scholar 

  • Matsuura, M., R. Saldanha, H. Ma, H. Wank, J. Yang et al., 1997. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev 11: 2910–2924.

    PubMed  CAS  Google Scholar 

  • McMillan, J.P. & M.F. Singer, 1993. Translation of the human LINE-1 element, L1Hs. Proc Natl Acad Sci. 90: 11533–11537.

    Article  PubMed  CAS  Google Scholar 

  • McNaughton, J.C., G. Hughes, W.A. Jones, P.A. Stockwell, H.J. Klamut et al., 1997. The evolution of an intron: analysis of a long, deletion-prone intron in the human dystrophin gene. Genomics 40: 294–304.

    Article  PubMed  CAS  Google Scholar 

  • Meischl, C., M. De Boer & D. Roos, 1998. Chronic granulomatous disease caused by a LINE-1 retrotransposon. Eur J Haem 60: 349–350.

    Google Scholar 

  • Miki, Y., I. Nishisho, A. Horii, Y. Miyoshi, J. Utsunomiya et al., 1992. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52: 643–645.

    PubMed  CAS  Google Scholar 

  • Minakami, R., K. Kurose, K. Etoh, Y. Furuhata, M. Hattori et al., 1992. Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. Nucl Acids Res 20: 3139–3145.

    PubMed  CAS  Google Scholar 

  • Moran, J.V., R.J. DeBerardinis & H.H. Kazazian, 1999a. Exon shuffling by L1 retrotransposition. Science 283: 1530–1534.

    Article  PubMed  CAS  Google Scholar 

  • Moran, J.V., Q. Feng, B.A. Dombroski, T.P. Naas, R.J. DeBerardinis et al., 1999b. L1-mediated processed pseudogene formation in Saccharomyces cerevisiae. In preparation.

  • Moran, J.V., S.E. Holmes, T.P. Naas, R.J. DeBerardinis, J.D. Boeke et al., 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87: 917–927.

    Article  PubMed  CAS  Google Scholar 

  • Moran, J.V., K.L. Mecklenburg, P. Sass, S.M. Belcher, D. Mahnke et al., 1994. Splicing defective mutants of the COX1 gene of yeast mitochondrial DNA: initial definition of the maturase domain of the group II intron aI2. Nucl Acids Res 22: 2057–2064.

    PubMed  CAS  Google Scholar 

  • Moran, J.V., S. Zimmerly, R. Eskes, J.C. Kennell, A.M. Lambowitz et al., 1995. Mobile group II introns of yeast mitochondrial DNA are novel site-specific retroelements. Mol Cell Biol 15: 2828–2838.

    PubMed  CAS  Google Scholar 

  • Morse, B., P.G. Rotherg, V.J. South, J.M. Spandorfer & S.M. Astrin, 1988. Insertional mutagenesis of the myc locus by a LINE-1 sequence in a human breast carcinoma. Nature 333: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Mulhardt, C., M. Fischer, P. Gass, D. Simon-Chazottes, J.-L. Guénet et al., 1994. The spastic mouse: aberrant splicing of glycine receptor b subunit mRNA caused by intronic insertion of L1 element. Neuron 13: 1003–1015.

    Article  PubMed  CAS  Google Scholar 

  • Naas, T.P., R.J. DeBerardinis, J.V. Moran, E.M. Ostertag, S.F. Kingsmore et al., 1998. An actively retrotransposing, novel subfamily of mouse L1 elements. EMBO J. 17: 590–597.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T.M. & T.R. Cech, 1998. Reversing time: origin of telomerase. Cell 92: 587–590.

    Article  PubMed  CAS  Google Scholar 

  • Narita, N., H. Nishio, Y. Kitoh, Y. Ishikawa, Y. Ishikawa et al., 1993. Insertion of a 5′ truncated L1 element into the 3′ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 91: 1862–1867.

    Article  PubMed  CAS  Google Scholar 

  • Okada, N., 1991. SINEs. Curr Opin Genet Dev 1: 498–504.

    Article  PubMed  CAS  Google Scholar 

  • Okada, N., M. Hamada, I. Ogiwara & K. Ohshima, 1997. SINEs and LINEs share common 3′ sequences: a review. Gene 205: 229–243.

    Article  PubMed  CAS  Google Scholar 

  • Rozmahel, R., H.H. Heng, A.M. Duncan, X.M. Shi, J.M. Rommens et al., 1997. Amplification of CFTR exon 9 sequences to multiple locations in the human genome. Genomics 45: 554–561.

    Article  PubMed  CAS  Google Scholar 

  • Sassaman, D.M., B.A. Dombroski, J.V. Moran, M.L. Kimberland, T.P. Naas et al., 1997. Many human L1 elements are capable of retrotransposition [see comments]. Nat Genet 16: 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Saxton, J.A. & S.L. Martin, 1998. Recombination between subtypes creates a mosaic lineage of LINE-1 that is expressed and actively retrotransposing in the mouse genome. J Mol Biol 280: 611–622.

    Article  PubMed  CAS  Google Scholar 

  • Schwahn, U., S. Lenzner, J. Dong, S. Feil, B. Hinzmann et al., 1998. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19: 327–332.

    Article  PubMed  CAS  Google Scholar 

  • Scott, A.F., B.J. Schmeckpeper, M. Abdelrazik, C.T. Comey, B. O'Hara et al., 1987. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1: 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Skowronski, J., T.G. Fanning & M.F. Singer, 1988. Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8: 1385–1397.

    PubMed  CAS  Google Scholar 

  • Smit, A.F.A., 1996. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev 6: 743–748.

    Article  PubMed  CAS  Google Scholar 

  • Stutz, F. & M. Rosbash, 1998. Nuclear RNA export. Genes Dev 12: 3303–3319.

    PubMed  CAS  Google Scholar 

  • Swergold, G.D., 1990. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10: 6718–6729.

    PubMed  CAS  Google Scholar 

  • Takahara, T., T. Ohsumi, J. Kuromitsu, K. Shibata, N. Sasaki et al., 1996. Dysfunction of the Orleans reeler gene arising from exon skipping due to transposition of a full-length copy of an active L1 sequence into the skipped exon. Hum Mol Genet 5: 989–993.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, R.E., M.F. Singer & T.F. Fanning, 1993. Undermethylation of specific LINE-1 sequences in human cells producing a LINE-1 encoded protein. Gene 133: 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Usdin, K. & A.V. Furano, 1989. The structure of the guanine-rich polypurine:polypyrimidine sequence at the right end of the rat L1 (LINE) element. J Biol Chem 264: 15681–15687.

    PubMed  CAS  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1988a. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol Biol Evol 5: 675–690.

    PubMed  CAS  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353–3362.

    PubMed  CAS  Google Scholar 

  • Xiong, Y.E. & T.H. Eickbush, 1988b. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 55: 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, K., A. Nakamura, M. Yazaki, S. Ikeda & S. Takeda, 1998. Insertional mutation by transposable element, L1, in the DMD gene results in X-linked dilated cardiomyopathy. Hum Mol Genet 7: 1129–1132.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerly, S., H. Guo, R. Eskes, J. Yang, P.S. Perlman et al., 1995a. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83: 529–538.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerly, S., H. Guo, P.S. Perlman & A.M. Lambowitz, 1995b. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82: 545–554.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, J.V. Human L1 retrotransposition: insights and peculiarities learned from a cultured cell retrotransposition assay. Genetica 107, 39–51 (1999). https://doi.org/10.1023/A:1004035023356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004035023356

Navigation