Skip to main content
Log in

Molecular paleontology of transposable elements from Arabidopsis thaliana

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We report results of a comprehensive computer-assisted analysis of new transposable elements (TEs) from Arabidopsis thaliana. Our analysis revealed several previously unknown pogo- and En/Spm-like families and two novel superfamilies of DNA transposons, Arnold and Harbinger. One of the En/Spm-like families (Atenspm) was found to be involved in generating satellite arrays in paracentromeric regions. Of the two superfamilies reported, Harbinger is distantly related to bacterial IS5-like insertion elements, and Arnold contains DNA transposons without terminal inverted repeats (TIRs), which were never reported in eukaryotes before. Furthermore, we report a large number of young and diverse copia-like autonomous and nonautonomous retroelements and discuss their potential evolutionary relationship with mammalian retroviruses. The A.thaliana genome harbors copia-like retroelements which encode a putative env-like protein reported previously in the SIRE-1 retrotransposon from soybean. Finally, we demonstrate a nonrandom chromosomal distribution of the most abundant A.thaliana TEs clustered in the first half of chromosome II, which includes the centromeric region. The families of TEs from A.thaliana are relatively young, extremely diverse and much smaller than those from mammalian genomes. We discuss the potential factors determining similarities and differences in the evolution of TEs in mammals and A. thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang et al., 1997. Gapped BLAST & PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Barakat, A., G. Matassi & G. Bernardi, 1998. Distribution of genes in the genome of Arabidopsis thaliana and its implications for the genome organization of plants. Proc. Natl. Acad. Sci. USA 95: 10044–10049.

    Article  PubMed  CAS  Google Scholar 

  • Baum, M., V.K. Ngan & L. Clarke, 1994. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol. Biol. Cell. 5: 747–761.

    PubMed  CAS  Google Scholar 

  • Benito, M.I. & V. Walbot, 1997. Characterization of the maize Mutator transposable element MURA transposase as a DNA-binding protein. Mol. Cell. Biol. 17: 5165–5175.

    PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., 1996. The mutator transposable element system of maize. Curr. Top. Microbiol. Immunol. 204: 195–229.

    PubMed  CAS  Google Scholar 

  • Cardon, G.H., M. Frey, H. Saedler & A. Gierl, 1993. Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J. 3: 773–784.

    Article  PubMed  CAS  Google Scholar 

  • Chye, M.L., K.-Y. Cheung & J. Xu, 1997. Characterization of TSCL, a nonviral retroposon from Arabidopsis thaliana. Plant Mol. Biol. 35: 893–903.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, L., 1998. Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr. Opin. Genet. Dev. 8: 212–218.

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver, G.P., W.E. Browne & D. Preuss, 1998. Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc. Natl. Acad. Sci. USA 95: 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Doak, T.G., F.P. Doerder, C.L. Jahn & G. Herrick, 1994. A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common ‘D35E’ motif. Proc. Natl. Acad. Sci. USA 91: 942–946.

    Article  PubMed  CAS  Google Scholar 

  • Gierl, A., 1996. The En/Spm transposable element of maize. Curr. Top. Microbiol. Immunol. 204: 145–159.

    PubMed  CAS  Google Scholar 

  • Hudson, D.F., K.J. Fowler, E. Earle, R. Saffery, P. Kalitsis et al., 1998. Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J. Cell. Biol. 141: 309–319.

    Article  PubMed  CAS  Google Scholar 

  • Jurka, J., 1995. Origin and evolution of Alu repetitive elements, pp. 25–41 in The Impact of Short Interspersed Elements (SINEs) on the Host Genome, edited by R.J. Maraia. R. G. Landes Company.

  • Jurka, J., 1998. Repeats in genomic DNA: mining nad meaning. Curr. Opin. Struct. Biol. 8: 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Jurka, J., V.V. Kapitonov, P. Klonowski, J. Walichiewicz & A.F.A. Smit, 1996a. Identification of new medium reiteration frequency repeats in the genomes of primates, rodentia and lagomorpha. Genetica 98: 235–247.

    Article  PubMed  CAS  Google Scholar 

  • Jurka, J., P. Klonowski, V. Dagman & P. Pelton, 1996b. CENSOR-a program for identification and elimination of repetitive elements from DNA sequences. Comput. Chem. 20: 119–121.

    Article  PubMed  CAS  Google Scholar 

  • Jurka, J. & V.V. Kapitonov, 1999. Sectorial mutagenesis by transposable elements. Genetica 107: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov, V.V. & J. Jurka, 1999. Depositions in the Arabidopsis thaliana section of Repbase Update. http://www.girinst.org/~server/repbase.html.

  • Kapitonov, V.V. & J. Jurka, 1996. The age of Alu subfamilies. J. Mol. Evol. 42: 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Kapoor, M., R. Montes de Oca Luna, G. Liu, G. Lozano, C. Cummnings et al., 1998. The cenpB gene is not essential in mice. Chromosoma 107: 570–576.

    Article  PubMed  CAS  Google Scholar 

  • Kipling, D. & P.E. Warburton, 1997. Centromeres, CENP-B and Tigger too. Trends Genet. 13: 141–145.

    Article  PubMed  CAS  Google Scholar 

  • Konieczny, A., D.F. Voytas, M.P. Cummings and F.M. Ausubel, 1991. A superfamily of Arabidopsis thaliana retrotransposons. Genetics 127: 801–809.

    PubMed  CAS  Google Scholar 

  • Kumar, A., 1996. The adventures of the Ty1-copia group of retrotransposons in plants. Trends Genet. 12: 41–43.

    Article  PubMed  CAS  Google Scholar 

  • Laten, H.M., A. Majumdar & E.A. Gaucher, 1998. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc. Natl. Acad. Sci. USA 95: 6897–6902.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., S. Kaul, S. Rounsley, T.P. Shea, M.I. Benito et al., 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–768.

    Article  PubMed  CAS  Google Scholar 

  • Marzais, B., S.G. Vorsanova, G. Roizes & Y.B. Yurov, 1999. Analysis of alphoid DNA variation and kinetochore size in human chromosome 21: evidence against pathological significance of alphoid satellite DNA diminutions. Tsitol. Genet. 33: 25–31.

    PubMed  CAS  Google Scholar 

  • Mayer, K., C. Schuller, R. Wambutt, G. Murphy, G. Volckaert et al., 1999. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402: 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Meinke, D.W., J.M. Cherry, C. Dean, S.D. Rounsley & M. Koornneef, 1998. Arabidopsis thaliana: a model plant for genome analysis. Science 282: 662, 679–682.

    Article  PubMed  CAS  Google Scholar 

  • Pelissier, T., S. Tutois, J.M. Deragon, S. Tourmente, S. Genestier et al., 1995. Athila, a new retroelement from Arabidopsis thaliana. Plant Mol. Biol. 29: 441–452.

    Article  PubMed  CAS  Google Scholar 

  • Pelissier, T., S. Tutois, S. Tourmente, J.M. Deragon & G. Picard, 1996. DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica 97: 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Castro, A.V., F.L. Shamanski, J.J. Meneses, T.L. Lovato, K.G. Vogel et al., 1998. Centromeric protein B null mice are viable with no apparent abnormalities. Dev. Biol. 201: 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Pluta, A.F., A.M. Mackay, A.M. Ainsztein, I.G. Goldberg & W.C. Earnshaw, 1995. The centromere, hub of chromosomal activities. Science 270: 1591–1594.

    PubMed  CAS  Google Scholar 

  • Polard, P. & M. Chandler, 1995. Bacterial transposases and retroviral integrases. Mol. Microbiol. 15: 13–23.

    PubMed  CAS  Google Scholar 

  • Round, E.K., S.K. Flowers & E.J. Richards, 1997. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res. 7: 1045–1053.

    PubMed  CAS  Google Scholar 

  • Smit, A.F., 1993. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res. 21: 1863–1872.

    PubMed  CAS  Google Scholar 

  • Smit, A.F. & A.D. Riggs, 1996. Tiggers and DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  • Snowden, K.C. & C.A. Napoli, 1998. Psl: a novel Spm-like transposable element from Petunia hybrida. Plant. J. 14: 43–54.

    Article  PubMed  CAS  Google Scholar 

  • Surzycki, S.A. & W.R. Belknap, 1999. Characterization of repetitive DNA elements in Arabidopsis. J. Mol. Evol. 48: 684–691.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, H., R. Schmidt, A. Brandes, J.S. Heslop-Harrison & C. Dean, 1996a. A novel repetitive sequence associated with the centromeric regions of Arabidopsis thaliana chromosomes. Mol. Gen. Genet. 253: 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, H., R. Schmidt & C. Dean, 1996b. Identification and distribution of seven classes of middle-repetitive DNA in the Arabidopsis thaliana genome. Nucleic Acids Res. 24: 3017–3022.

    Article  PubMed  CAS  Google Scholar 

  • Tsay, Y.-F., M.J. Frank, T. Page, C. Dean & N.M. Crawford, 1993. Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science 260: 342–344.

    PubMed  CAS  Google Scholar 

  • Tudor, M., M. Lobocka, M. Goodell, J. Pettitt & K. O'Hare, 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232: 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Tyler-Smith, C., G. Gimelli, S. Giglio, G. Floridia, A. Pandya et al., 1999. Transmission of a fully functional human neocentromere through three generations. Am. J. Hum. Genet. 64: 1440–1444.

    Article  PubMed  CAS  Google Scholar 

  • Voullaire, L., R. Saffery, J. Davies, E. Earle, P. Kalitsis et al., 1999. Trisomy 20p resulting from inverted duplication and neocentromere formation. Am. J. Med. Genet. 85: 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Wessler, S.R., T.E. Bureau & S.E. White, 1995. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5: 814–821.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R.K., 1999. How the worm was won. The C. elegans genome sequencing project. Trends Genet. 15: 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Wolffe, A.P. & M.A. Matzke, 1999. Epigenetics: regulation through repression. Science 286: 481–486.

    Article  PubMed  CAS  Google Scholar 

  • Wright, D.A., N. Ke, J. Smalle, B.M. Hauge, H.M. Goodman et al., 1996. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics 142: 569–578.

    PubMed  CAS  Google Scholar 

  • Wright, D.A. & D.F. Voytas, 1998. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149: 703–715.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapitonov, V.V., Jurka, J. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107, 27–37 (1999). https://doi.org/10.1023/A:1004030922447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004030922447

Navigation