Skip to main content
Log in

Is the evolution of transposable elements modular?

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The evolution of transposable element structures can be analyzed in populations and species and by comparing the functional domains in the main classes of elements. We begin with a synthesis of what we know about the evolution of the mariner elements in the Drosophilidae family in terms of populations and species. We suggest that internal deletion does not occur at random, but appears to frequently occur between short internal repeats. We compared the functional domains of the DNA and/or amino acid sequences to detect similarities between the main classes of elements. This included the gag, reverse transcriptase, and envelope genes of retrotransposons and retroviruses, and the integrases of retrotransposons and retroviruses, and transposases of class II elements. We find that each domain can have its own evolutionary history. Thus, the evolution of transposable elements can be seen to be modular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D.J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  • Auge-Gouillou, C., Y. Bigot, N. Pollet, M.H. Hamelin, M. Meunier-Rotival & G. Periquet, 1995. Human and other mammalian genomes contain transposons of the mariner family. FEBS Lett. 368: 541–546.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, T.L. & C. Elkan, 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers, pp. 28–36 in Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology. AAAI Press, Menlo Park, California.

    Google Scholar 

  • Bigot, Y., C. Augé-Gouillou & G. Periquet, 1996. Computer analyses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1-mariner transposon family. Gene 174: 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Black, D.M., M.S. Jackson, M.G. Kidwell & G.A. Dover, 1987. KP elements repress hybrid dysgenesis in Drosophila melanogaster. EMBO J. 6: 4125.

    PubMed  CAS  Google Scholar 

  • Brunet, F., F. Godin, C. Bazin & P. Capy, 1999. Phylogenetic analysis of Mos1-like transposable elements in the Drosophilidae. J. Mol. Evol. 49: 760–768.

    Article  PubMed  CAS  Google Scholar 

  • Brunet, F., F. Godin, C. Bazin, J.R. David & P. Capy, 1996. The mariner transposable element in natural populations of Drosophila teissieri. J. Mol. Evol. 42: 669–675.

    Article  PubMed  CAS  Google Scholar 

  • Calvi, B.R., T.J. Hong, S.D. Findley & W.M. Gelbart, 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66: 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Capy, P., C. Bazin, D. Higuet & T. Langin, 1997a. Dynamic and Evolution of Transposable Elements. R.G. Landes Company, Austin, Texas, USA.

    Google Scholar 

  • Capy, P., C. Bazin, D. Higuet & T. Langin, 1997b. Evolution and Impact of Transposable Elements. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Capy, P., T. Langin, Y. Bigot, F. Brunet, M.J. Daboussi, G. Periquet, J.R. David & D.L. Hartl, 1994. Horizontal transmission versus ancient origin: mariner in the witness box. Genetica 93: 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Capy, P., T. Langin, D. Higuet, P. Maurer & C. Bazin, 1997c. Does the integrase of LTR-retrotransposons and most of the transposases of class II elements share a common ancestor? Genetica 100: 63–72.

    Article  PubMed  CAS  Google Scholar 

  • Capy, P., R. Vitalis, T. Langin, D. Higuet & C. Bazin, 1996. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J. Mol. Evol. 42: 359–369.

    PubMed  CAS  Google Scholar 

  • Chaboissier, M.C., A. Bucheton & D.J. Finnegan, 1998. Copy number control of a transposable element, the I factor, a LINE-like element in Drosophila. Proc. Natl. Acad. Sci. USA 95: 11781–11785.

    Article  PubMed  CAS  Google Scholar 

  • Covey, S.N., 1986. Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res. 14: 623–633.

    PubMed  CAS  Google Scholar 

  • Craven, R.C., A.E.L.-d. Pree, R.A.W. JR & J.W. Wills, 1995. Genetic analysis of the Major Homology Region for the Rous Sarcoma Virus gag protein. J. Virol. 69: 4213–4227.

    PubMed  CAS  Google Scholar 

  • Dayhoff, M.O., R.M. Schwartz & B.C. Orcutt, 1978. A model of evolutionary change in proteins, pp. 345–352 in Atlas of Protein Sequence and Structure, edited by M. O. Dayhoff. Natl. Biomed. Res. Found., Washington, DC.

    Google Scholar 

  • Doak, T.G., F.P. Doerder, C.L. Jahn & G. Herrick, 1994. A proposed superfamily of transposase-related genes: new members in transposon-like elements of cilliated protozoa and a common ‘D35E’ motif. Proc. Natl. Acad. Sci. USA 91: 942–946.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, W.F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Fayet, O., P. Ramond, P. Polard, M.F. Frère & M. Chandler, 1990. Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol. Microbiol. 4: 1771–1777.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J., 1993. PHYLIP (Phylogeny Inference Package). Version 3.5.c University of Washington, Seattle.

    Google Scholar 

  • Feng, Q., J.V. Moran, H.J. Kazazian & J.D. Boeke, 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905–916.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, D.J., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Gaboriaud, C., V. Bissery, T. Benchetrit & J.P. Mornon, 1987. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. Febs Lett 224: 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernàndez, J., G. Marfany, J. Bagunà & E. Salò, 1993. Infiltration of mariner elements. Nature 364: 109–110.

    Article  PubMed  Google Scholar 

  • George, D.G., L.T. Hunt & W.C. Barker, 1988. Current methods in sequence comparison and analysis, pp. 127–149 in Macromolecular Sequencing and Synthesis, edited by D. H. Schlesinger. A.R. Liss, New York.

    Google Scholar 

  • Gilbert, D.G., 1998. SeqPup: a biosequence editor. Version 0.8c. Distributed by the author at seqpup@bio.indiana.edu.

  • Grenier, E., M. Abadon, F. Brunet, P. Capy & P. Abad, 1999. A mariner-like transposable element in the entomopathogenic nematode Heterorhabdis bacteriophora, horizontal trasmission versus ancient origin. J. Mol. Evol. 48: 328–336.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, J.W., M.M. Medhora & D.L. Hartl, 1986. Molecular structure of a somatically unstable element in Drosophila. Proc. Natl. Acad. Sci. USA 83: 8684–8688.

    Article  PubMed  CAS  Google Scholar 

  • Jarvik, T. & K.G. Lark, 1998. Characterization of Soymar1, a mariner element in soybean. Genetics 149: 1569–1574.

    PubMed  CAS  Google Scholar 

  • Jensen, S., M.P. Gassama & T. Heidmann, 1999. Taming of transposable elements by homology-dependent gene silencing. Nat. Genet. 21: 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Jordan, I.K. & J.F. McDonald, 1999a. Phylogenetic perspective reveals abundant Ty1/Ty2 hybrid elements in the Saccharomyces cerevisiae genome [letter]. Mol. Biol. Evol. 16: 419–422.

    PubMed  CAS  Google Scholar 

  • Jordan, I.K. & J.F. McDonald, 1999b. Comparative genomics and evolutionary dynamics of Saccharomyces cerevisiae Ty elements. Genetica 107: 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Labrador, M. & A. Fontdevila, 1994. High transposition rates of Osvaldo, a new Drosophila buzzatii retrotransposon. Mol. Gen. Genet. 245: 661–674.

    Article  PubMed  CAS  Google Scholar 

  • Laten, H.M., A. Majumdar & E.A. Gaucher, 1998. SIRE-1, a copia/Ty1 retroelement from soybean, encodes a retroviral envelope-like protein. Proc. Natl. Acad. Sci. USA 95: 6897–6902.

    Article  PubMed  CAS  Google Scholar 

  • Lemesle-Varloot, L., B. Henrissat, C. Gaboriaud, V. Bissery, A. Morgat & J.P. Mornon, 1990. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie 72: 555–574.

    Article  PubMed  CAS  Google Scholar 

  • Lerat, E. & P. Capy, 1999. Retrotransposons and retroviruses: analysis of the envelope gene. Mol. Biol. Evol. 16: 1198–1207.

    PubMed  CAS  Google Scholar 

  • Luan, D.D., M.H. Korman, J.L. Jakubczak & T.H. Eickbush, 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal traget site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Mammano, F., A. Öhagen, S. Höglund & H. Göttlinger, 1994. Role of the Major Homology Region of Human Immunodeficiency Virus type 1 in virion morphogenesis. J. Virol. 68: 4927–4936.

    PubMed  CAS  Google Scholar 

  • Maruyama, K. & D.L. Hartl, 1991. Evolution of the transposable element mariner in Drosophila species. Genetics 128: 319–329.

    PubMed  CAS  Google Scholar 

  • McClure, M., 1993. Evolutionary history of reverse transcriptase, pp. 425–444 in Reverse transcriptase, edited by M. Skalka, and S. P. Goff. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • McClure, M.A., 1991. Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol. Biol. Evol. 8: 835–856.

    PubMed  CAS  Google Scholar 

  • Morgan, G.T., 1995. Identification in the human genome of mobile elements spread by DNA-mediated transposition. J. Mol. Biol. 17: 1–5.

    Article  Google Scholar 

  • Okazaki, S., H. Ishikawa & H. Fujiwara, 1995. Structural analysis of TRAS1, a novel family of telomeric repeat-associated retro-transposons in the silkworm, Bombyx mori. Mol. Cell. Biol. 15: 4545–4552.

    PubMed  CAS  Google Scholar 

  • Oosumi, T., W.R. Belknap & B. Garlick, 1995. Mariner transposons in humans. Nature 378: 672–672.

    Article  PubMed  CAS  Google Scholar 

  • Orgel, L.E. & F.H.C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Pardue, M.-L., O.N. Danilevskaya, K.L. Traverse & K. Lowenhaupt, 1997. Evolutionary links between telomeres and transposable elements. Genetica 100: 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Petrov, D.A., E.R. Lozovskaya & D.L. Hartl, 1996. High intrinsic rate of DNA loss in Drosophila. Nature 384: 346–349.

    Article  PubMed  CAS  Google Scholar 

  • Reiter, L.T., T. Murakami, T. Koeuth, L. Pentao, D.M. Muzny, R.A. Gibbs & J.R. Lupski, 1996. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nature Genet. 12: 288–297.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., 1997. Multiple mariner transposons in flatworms and hydras are related to those of insects. J. Heredity 88: 195–201.

    CAS  Google Scholar 

  • Robertson, H.M. & E.G. MacLeod, 1993. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol. Biol. 2: 125–139.

    PubMed  CAS  Google Scholar 

  • Robertson, H.M. & R. Martos, 1997. Molecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage. Gene 205: 219–228.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M. & K.L. Zumpano, 1997. Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. Gene 205: 203–217.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., Z.L. Zumpano, A.R. Lohe & D.L. Hartl, 1996. Reconstruction of the ancient mariners of humans. Nature Genet. 12: 360–361.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, E. & A.A. Levy, 1997. Abortive gap repair: underlying mechanism for Ds element formation. Mol. Cell Biol. 17: 6294–6302.

    PubMed  CAS  Google Scholar 

  • Sedensky, M.M., S.J. Hudson, B. Everson & P.G. Morgan, 1994. Identification of a mariner-like repetitive sequence in C. elegans. Nucleic Acids Res. 22: 1719–1723.

    PubMed  CAS  Google Scholar 

  • Streck, R.D., J.E. MacGaffey & S.K. Beckendorf, 1986. The structure of hobo transposable elements and their insertion. EMBO J. 5: 3615–3623.

    PubMed  CAS  Google Scholar 

  • Strimmer, K. & A. vonHaeseler, 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13: 964–969.

    CAS  Google Scholar 

  • Swofford, D.L., 1993. Phylogenetic analysis using parsimony. Version 3.1.1. Smithsonian Institution Washington DC.

  • Swofford, D.L., G.J. Olsen, P.J. Waddel & D.M. Hillis, 1996. Phylogenetic inference, pp. 407–514 in Molecular Systematics, edited by D. M. Hillis, Moritz and Mable. Sinauer.

  • Wiley, L.J., L.G. Riley, N.C. Sangster & A.S. Weiss, 1997. mle-1, a mariner-like transposable element in the nematode Trichostrongylus colubriformis. Gene 188: 235–237.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353–3362.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Capy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerat, E., Brunet, F., Bazin, C. et al. Is the evolution of transposable elements modular?. Genetica 107, 15–25 (1999). https://doi.org/10.1023/A:1004026821539

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004026821539

Navigation