Skip to main content
Log in

Lifetable demography of four cladoceran species in relation to algal food (Chlorella vulgaris) density

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Algal food density is known to influence life history variables of cladoceran species. It is not, however, well established whether both littoral and planktonic cladocerans show similar trends when exposed to increasing food concentrations. In the present work, we studied the life table demography of four cladoceran species (Ceriodaphnia cornuta, Moina macrocopa, Pleuroxus aduncus and Simocephalus vetulus) in relation to three algal food concentrations (low: 0.5 × 106, medium: 1.5 × 106 and high: 4.5 × 106 cells ml−1 of Chlorella vulgaris) (in terms of carbon content, these were equivalent to 0.15, 0.45 and 1.35 μg ml−1, respectively) at 25 °C. In general, for all the tested cladoceran species, values of average lifespan, gross reproductive rate, net reproductive rate, generation time and the rate of population growth were higher at lower food concentrations. Furthermore, high food concentration resulted in a negative population growth rate (mean ± standard error: −0.091 ± 0.026) for P. aduncus. The highest population growth rate (0.602 ± 0.014) was recorded for M. macrocopa at low food density. S. vetulus had the longest average lifespan (40 ± 1 d) while M. macrocopa had the lowest (5 ± 1 d). C. cornuta showed better performance at medium food concentration. We conclude that among the algal concentrations used here, 0.5 × 106 – 1.5 × 106 was beneficial not only to the planktonic species but also to the littoral P. aduncus and S. vetulus while 4.5 × 106 cells ml−1 was unsuitable for all the cladocerans tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D. & C. E. Goulden, 1980. Some aspects of reproductive variation among freshwater zooplankton. In Kerfoot, W. C. (ed.), Ecology and Evolution of Zooplankton Communities, University Press of New England, Hanover, New Hampshire: 388–410.

    Google Scholar 

  • Anonymous, 1985. Methods of measuring the acute toxicity of ef-fluents to freshwater and marine organisms. US Environment Protection Agency EPA/600/4-85/013.

  • Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal Biotechnology. Cambridge University Press, London.

    Google Scholar 

  • DeMott, W. R., 1989. The role of competition in zooplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer, New York: 195–252.

    Google Scholar 

  • Dodson, S. I. & D. G. Frey, 1991. Cladocera and other Branchiopoda. In: Ecology and Classification of North American Freshwater Invertebrates. Academic Press, New York: 723–786.

    Google Scholar 

  • Downing, J. A. & F. H. Rigler (eds), 1984. A Manual on the Methods for the Assessment of Secondary Productivity in Fresh Waters. IBP Handbook 17, Blackwell Scientific Publ., London.

    Google Scholar 

  • Dumont, H. J., J. G. Tundisi & K. Roche (eds), 1990. Intrazooplankton Predation. Developments in Hydrobiology 60. Kluwer Academic Publishers, Dordrecht: 250 pp. Reprinted from Hydrobiologia 198.

    Google Scholar 

  • Glazier, D. S., 1992. Effects of food, genotype and maternal size and age on offspring investment in in Daphnia magna. Ecology 73: 910–926.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Food thresholds and body size in cladocerans. Nature 343: 638–640.

    Google Scholar 

  • Gulati, R. D. & W. R. DeMott (eds), 1997. The Role of Food Quality for Zooplankton. Freshwat. Biol. 38: 447-771.

  • King, C. E., 1982. The evolution of lifespan. In Dingle, H. & J. P. Hegmann (eds), Proceedings in Life Sciences: Evolution and Genetics of Life Histories. Springer-Verlag, New York: 121–138.

    Google Scholar 

  • Lampert, W. & U. Schober, 1980. The importance of 'threshold' food concentrations. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, New Hampshire: 264–267.

    Google Scholar 

  • Lampert, W. & U. Sommer, 1997. Limnoecology: the Ecology of Lakes and Streams. Oxford University Press, New York: 382 pp.

    Google Scholar 

  • Lynch, M., 1980. The evolution of cladoceran life histories. Q. Rev. Biol. 55: 23–42.

    Google Scholar 

  • Nandini, S. & T. R. Rao, 1998. Somatic and population growth in selected cladoceran and rotifer species offered the cyanobacterium Microcystis aeruginosa as food. Aquat. Ecol. 31: 283–298.

    Google Scholar 

  • Pianka, E. R., 1988. Evolutionary ecology. Harper & Row, New York, 3rd edn: 468 pp.

    Google Scholar 

  • Porter, K. G., J. Gerritsen & J. D. Orcutt, Jr., 1982. The effect of food concentration on swimming patterns, feeding behaviour, ingestion, assimilation and respiration by Daphnia. Limnol. Oceanogr. 27: 935–949.

    Google Scholar 

  • Robertson, A. L., 1990. Population dynamics of Chydoridae and Macrothricidae (Cladocera: Crustacea) from the River Thames, U.K. Freshwat. Biol. 24: 375–389.

    Google Scholar 

  • Romanovsky, Y. E., 1985. Food limitation and life history strategies in cladoceran crustaceans. Ergebn. Limnol. 21: 363–372.

    Google Scholar 

  • Rothhaupt, K. O., 1988. Mechanistic resource competition theory applied to laboratory experiments with zooplankton. Nature 333: 660–662.

    Google Scholar 

  • Sarma, S. S. S., M. A. Fernández-Araiza & S. Nandini, 1999. Competition between Brachionus calyciflorus Pallas and Brachionus patulus (Müller) (Rotifera) in relation to algal food concentration and initial population density. Aquat. Ecol.

  • Sarma, S. S. S. & T. R. Rao, 1991. The combined effects of food and temperature on the life history parameters of Brachionus patulus Muller (Rotifera). Int. Rev. ges. Hydrobiol. 76: 225–239.

    Google Scholar 

  • Sommer, U. (ed.), 1989. Plankton Ecology: Succession in Plankton Communities. Springer, New York.

    Google Scholar 

  • Stearns, S. C., 1976. Life history tactics: a review of ideas. Q. Rev. Biol. 51: 3–47.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1985a. Assessment of threshold food levels and population growth in planktonic rotifers. Ergebn. Limnol.. 21: 269–275.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1985b. Body size, food concentration and population growth in planktonic rotifers. Ecology 66: 1151–1159.

    Google Scholar 

  • Vanni, M. J. & W. Lampert, 1992. Food quality effects on life history traits and fitness in the generalist herbivore Daphnia. Oecologia 92: 48–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. S. Sarma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nandini, S., Sarma, S.S.S. Lifetable demography of four cladoceran species in relation to algal food (Chlorella vulgaris) density. Hydrobiologia 435, 117–126 (2000). https://doi.org/10.1023/A:1004021124098

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004021124098

Navigation