Advertisement

Hydrobiologia

, Volume 426, Issue 1, pp 37–42 | Cite as

The influence of Corophium volutator abundance on resuspension

  • E. M. G. T. de Deckere
  • J. van de Koppel
  • C. H. R. Heip
Article

Abstract

Two experiments were performed to test the hypothesis that Corophium volutator affects the turbidity of water in estuaries through active resuspension of sediment. One experiment was done in a flume system under different flow velocities, and one in aquaria. A diatom film developed at the sediment surface in both experiments before Corophium was added. This diatom film was supposed to have a stabilising effect on the sediment. In both experiments, the concentration of suspended solids in the water column increased with the density of Corophium individuals. No effect of flow velocity on suspended solids concentration was found. This indicates that, in our flume experiment, active resuspension by Corophium was more important than physical resuspension, at least at low flow velocity (<20 cm s-1) and in the presence of a diatom film. The critical erosion threshold decreased with increasing Corophium density in the aquarium experiment, indicating that indirect effects of Corophium grazing may become more important at high levels of bottom shear stress. The implications of our findings for suspended solids concentration in estuarine systems are discussed.

Corophium resuspension turbidity sediment stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D. & A. Bennett, 1981. Measurements of diffusivity near the sediment-water interface with a fine-scale resistivity probe. Geochim. Cosmochim. Acta 45: 2169–2175.Google Scholar
  2. Beukema, J. J. & E. C. Flach, 1995. Factors controlling the upper and lower limits of the intertidal distribution of two Corophium species in the Wadden Sea. Mar. Ecol. Prog. Ser. 125: 117–126.Google Scholar
  3. Daborn, G. R., C. L. Amos, M. Brylinsky, H. Christian, G. Drapeau, R. W. Faas, J. Grant, B. Long & D. M. Paterson, 1993. An ecological cascade effect: Migratory birds affect stability of intertidal sediments. Limnol. Oceanogr. 38: 225–231.Google Scholar
  4. Davis, W. R., 1993. The role of bioturbation in sediment resuspension and its interaction with physical shearing. J. exp. mar. Biol. Ecol. 171: 187–200.Google Scholar
  5. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers & F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.Google Scholar
  6. Eckman, J. E., A. R. M. Nowell & P. A. Jumars, 1981. Sediment destabilization by animal tubes. J. mar. Res. 39: 361–374.Google Scholar
  7. Fenchel, T., L. H. Kofoed & A. Lappalainen, 1975. Particle sizeselection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia ulvae. mar. Biol. 30: 119–128.Google Scholar
  8. Flach, E. C., 1992. The influence of four macrozoobenthic species on the abundance of the amphipod Corophium volutator on tidal flats of the Wadden Sea. Neth. J. Sea Res. 29: 379–394.Google Scholar
  9. Gerdol, V. & R. G. Hughes, 1994a. Effect of Corophium volutator on the abundance of benthic diatoms, bacteria and sediment stability in two estuaries in southeastern England. Mar. Ecol. Prog. Ser. 114: 109–115.Google Scholar
  10. Gerdol, V. & R. G. Hughes, 1994b. Feeding behaviour and diet of Corophium volutator in an estuary in southeastern England. Mar. Ecol. Prog. Ser. 114: 103–108.Google Scholar
  11. Grant, J. & G. Daborn, 1994. The effects of bioturbation on sediment transport on an intertidal mudflat. Neth. J. Sea Res. 32: 63–72.Google Scholar
  12. Hawkins, C. M., 1985. Population carbon budgets and the importance of the amphipod Corophium volutator in the carbon transfer on a cumberland basin mudflat, upper bay of Fundy, Canada. Neth. J. Sea Res. 19: 165–176.Google Scholar
  13. Icely, J. D. & J. A. Nott, 1985. Feeding and digestion in Corophium volutator (Crustacea: amphipoda). Mar. Biol. 89: 183–195.Google Scholar
  14. Jones, S. E. & C. F. Jago, 1993. In situ assessment of modification of sediment properties by burrowing invertebrates. Mar. Biol. 115: 133–142.Google Scholar
  15. Kamermans, P. & H. J. Huitema, 1994. Shrimp (Crangon crangon L.) browsing upon siphon tips inhibits feeding and growth in the bivalve Macoma balthica (L.). J. exp. mar. Biol. Ecol. 175: 59–75.Google Scholar
  16. Kester, D. R., I. W. Duedall, N. Connors & R. M. Pytkowicz, 1967. Preparation of artificial seawater. Limnol. Oceanogr. 12: 176–179.Google Scholar
  17. Limia, J. & D. Raffaelli, 1997. The effects of burrowing by the amphipod Corophium volutator on the ecology of intertidal sediments. J. mar. biol. Ass. U.K. 77: 409–423.Google Scholar
  18. Lorenzen, C. J., 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346.Google Scholar
  19. Mantoura, R. F. C. & C. A. Llewellyn, 1973. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. chim. Acta. 151: 297–314.Google Scholar
  20. Meadows, P. S. & A. Reid, 1966. The behaviour of Corophium volutator (Crustacea: Amphipoda). J. Zool. 150: 387–399.Google Scholar
  21. Meadows, P. S. & J. Tait, 1989. Modification of sediment permeability and shear strength by two burrowing invertebrates. Mar. Biol. 101: 75–82.Google Scholar
  22. Meadows, P. S., J. Tait & S. A. Hussain, 1990. Effects of estuarine infauna on sediment stability and particle sedimentation. Hydrobiologia 190: 263–266.Google Scholar
  23. Murdoch, M. H., F. Bärlocher & M. L. Laltoo, 1986. Population dynamics and nutrition of Corophium volutator (Pallas) in the Cumberland Basin (Bay of Fundy). J. exp. mar. Biol. Ecol. 103: 235–249.Google Scholar
  24. Nielsen, M. V. & L. H. Kofoed, 1982. Selective feeding and epipsammic browsing by the deposit-feeding amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 10: 81–88.Google Scholar
  25. Nieuwenhuize, J., Y. E. M. Maas & J. J. Middelburg, 1994. Rapid analysis of organic carbon and nitrogen in particulate materials. Mar. Chem. 45: 217–224.Google Scholar
  26. Paterson, D. M., 1989. Short-term changes in the erodibility of intertidal cohesive sediments related to the migratory behavior of epipelic diatoms. Limnol. Oceanogr. 34: 223–234.Google Scholar
  27. Pelegri, S. P., L. P. Nielsen & T. H. Blackburn, 1994. Denitrification in estuarine sediment stimulated by the irrigation activity of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 105: 285–290.Google Scholar
  28. Reise, K., 1985. Tidal Flat Ecology. Springer-Verlag, Heidelberg: 191 pp.Google Scholar
  29. Rhoads, D. C., 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. ann. Rev. 12: 263–300.Google Scholar
  30. Stuart, V., 1985. Seasonal changes in the digestive enzyme levels of the amphipod Corophium volutator (Pallas) in relation to diet. J. exp. mar. Biol. Ecol. 88: 243–256.Google Scholar
  31. Tolhurst, T. J., K. S. Black, S. A. Shayler, S. Mather, I. Black, K. Baker & D. M. Paterson, 1999. Measuring the in situ erosion shear stress of intertidal sediments with the Cohesive Strength Meter (CSM). Estuar. coast. shelf. Sci. 49: 281–294.Google Scholar
  32. Underwood, G. J. C., D. M. Paterson & R. J. Parkes, 1995. The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol. Oceanogr. 40: 1243–1253.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • E. M. G. T. de Deckere
    • 1
  • J. van de Koppel
    • 2
  • C. H. R. Heip
    • 2
  1. 1.Centre for Estuarine and Coastal EcologyNetherlands Institute of EcologyYersekeThe Netherlands
  2. 2.Centre for Estuarine and Coastal EcologyNetherlands Institute of EcologyYersekeThe Netherlands

Personalised recommendations