Skip to main content
Log in

Understanding the assembly of phytoplankton in relation to the trophic spectrum: where are we now?

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

An overview of the eleventh IAP Workshop is presented. Although significant progress has been made in the recognition of the factors governing species selection at differing trophic levels, it is recognised that the ultimate influences of species composition are precedent and stochasticity. No individual species is selected uniquely by a given combination of environmental conditions, although there are functional and morphological traits which pre-adapt some species above others to function preferentially in either oligotrophic or eutrophic conditions. With this in mind, a new set of rules of community assembly is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beyruth, Z., 2000. Periodic disturbances, trophic gradient and phytoplankton characteristics related to cyanobacterial growth in Guarapiranga Reservoir, São Paulo state, Brazil. Hydrobiologia 424 (Dev. Hydrobiol. 150): 51–65.

    Google Scholar 

  • Borics, G., I. Grigorszky, S. Szabó & J. Padisák, 2000. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom-up to top-down control. Hydrobiologia 424 (Dev. Hydrobiol. 150): 79–90.

    Google Scholar 

  • Braun-Blanquet, J., 1964. Pflanzensociologie. Springer, Wien.

    Google Scholar 

  • Dokulil, M.T., 1999. Die Bedeutung hydroklimatischer Ereignisse für die Dynanikes Phytoplanktons in einem alpinum Klarwassersee (Mondsee, Österreich). Beitr. angewa. Gewässerökolo. Norddeutschlands, in press.

  • Dokulil, M.T & J. Mayer, 1996. Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria. Algolo. Studies 83: 179–195.

    Google Scholar 

  • Head, R.M., R.I. Jones & A.E. Bailey-Watts, 1999. An assessment of the influence of recruitment from the sediment on the development of planktonic populations of cyanobacteria in a temperate mesotrophic lake. Freshwat. Biol. 41: 759–769.

    Google Scholar 

  • Huszar, V.L.M., L.H.S. Silva, M. Marinho, P. Domingos & C.L. Sant'Anna, 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia 424 (Dev. Hydrobiol. 150): 67–77.

    Google Scholar 

  • Leitão, M. & L. Léglize, 2000. Long-term variations of epilimnetic phytoplankton in an artificial reservoir during a 10-year survey. Hydrobiologia 424 (Dev. Hydrobiol. 150): 39–49.

    Google Scholar 

  • Padisák, J., 1992. Seasonal succession of phytoplankton in a large, shallow lake (Balaton, Hungary)-a dynamic approach to biological memory, its possible role and mechanisms. J. Ecol. 80, 217–230.

    Google Scholar 

  • Reynolds, C.S., 1987. The response of phytoplankton communities to changing lake environments. Schweiz. Z. Hydrol. 49: 220–236.

    Google Scholar 

  • Reynolds, C.S., 1997. Vegetation processes in he pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf.

    Google Scholar 

  • Rojo, C., E. Ortega-Mayagoitia & M. Alvarez-Cobelas, 2000. Lack of pattern among phytoplankton assemblages. Or, what does the exception to the rule mean? Hydrobiologia 424 (Dev. Hydrobiol. 150): 133–140.

    Google Scholar 

  • Southwood, T.R.E., 1997. Habitat, the templet for ecological strategies? J. anim. Ecol. 46: 337–365.

    Google Scholar 

  • Temponeras, M., J. Kristiansen & M. Moustaka-Gouni, 2000. Seasonal variation in phytoplankton composition and physical-chemical features of the shallow Lake Doïrani, Macedonia, Greece. Hydrobiologia 424 (Dev. Hydrobiol. 150): 109–122.

    Google Scholar 

  • Ter Braak, C.J.F., 1987. CANOCO-a FORTRAN program for canonical community ordination by partial, detrended canonical correspondence analysis, principal components analysis and redundancy analysis. ITI-INO, Wageningen.

    Google Scholar 

  • Teubner, K., R. Feyerabend, M. Henning, A. Niklisch, P. Woitke & J.-G. Kohl, 1999. Alternative blooming of Aphanizomenon flosaquae or Planktothrix agardhii by the timing of ctical nitrogen; phosphorus ratio in hypertrophic riverine lakes. Adv. Limnol. 54: 325–344.

    Google Scholar 

  • Tilman, D., 1996. Biodiversity: population versus ecosystem stability. Ecology 77: 350–363.

    Google Scholar 

  • Tüxen, R., 1955. Das Systeme der nordwestdeutschen Pflanzengesellschaft. Mitt. Florist-soziolog. Arbeitsgem. 5: 1–119.

    Google Scholar 

  • Ulanowicz, R.E., 1986. Growth and Development. Springer, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, C., Dokulil, M. & Padisák, J. Understanding the assembly of phytoplankton in relation to the trophic spectrum: where are we now?. Hydrobiologia 424, 147–152 (2000). https://doi.org/10.1023/A:1003973532706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003973532706

Navigation