Skip to main content
Log in

A plea for more ecology in phytoplankton ecology

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

When looking for a pattern of phytoplankton behaviour across trophic gradients, we need to cross the boundaries between different disciplinary areas, from autoecology to systems ecology, because eutrophication is a complex process which involves different time scales and different levels of community structure. Thus, we submit our observations to the muddled conceptual world of assemblage ecology. These inaccuracies arise, for example, from both species and community arguments; eutrophication as a fertilization or a metabolic phenomenon; and the notions frequently interwoven of pattern, process and rules. We suggest that it is advantageous to tackle this issue from the perspective of general ecology, rather than from a specifically planktonic orientation. In this way, useful general ecological tools, for example, time series and assembly-rule studies, can be used. Time-series study allows the dynamics of any variable to be described or to show that long term variable fluctuations may sometimes be unregulated, in response to some exogenous factor. Rules of assembly help us to resolve which traits are selectively involved during the eutrophication process. In this context, we advocate (1) the use of traits instead of morphospecies in phytoplankton studies, (2) looking for the dynamic patterns of phytoplankton with eutrophication, (3) the use of time series techniques to study phytoplankton trajectories, (4) the use of assembly rules to discern patterns in the formation of multispecies assemblages, (5) the consideration of the pelagic food-web in studies of phytoplankton dynamics and, as an overall suggestion, to borrow knowledge and inspiration from general ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T. F. H. & T. W. Hoekstra, 1992. Toward a Unified Ecology. Columbia, New York: 384 pp.

  • Alvarez-Cobelas, M., M. Verdugo & C. Rojo, 1995. Time series of multivariate data in aquatic ecology. Aquat. Sci. 57(3): 185–198.

    Google Scholar 

  • Alvarez-Cobelas, M., C. S. Reynolds, P. Sanchez-Castillo & J. Kristiansen (eds), 1998. Phytoplankton and Trophic Gradients. Developments in Hydrobiology 129. Kluwer Academic Publishers, Dordrecht, The Netherlands: 372 pp. Reprinted from Hydrobiologia 369/370.

    Google Scholar 

  • Anderson, N. J., 1995. Temporal scale, phytoplankton ecology and paleolimnology. Freshwat. Biol. 34: 367–378

    Google Scholar 

  • Begon, M., J. L. Harper & C. R. Townsend, 1996. Ecology. Blackwell Science, Oxford: 1068 pp.

    Google Scholar 

  • Cappuccino, N. & P. W. Price, 1995. Population Dynamics. New Approach and Synthesis. Academic Press, San Diego: 429 pp.

    Google Scholar 

  • Carpenter, S. R., J. A. Morrice, J. J. Elser, A. S. Amand & N. A. MacKay, 1993. Phytoplankton community dynamics. In Carpenter, S. R. & J. F. Kitchell (eds), The Trophic Cascade in Lakes. Cambridge University Press, Cambridge: 189–224.

    Google Scholar 

  • Chatfield, C., 1984. The Analysis of Time Series. Chapman & Hall, London: 286 pp.

    Google Scholar 

  • Drake, J. A., 1990a. Community as assembled structures: Do rules govern pattern? TREE 5: 159–164

    Google Scholar 

  • Drake, J. A., 1990b. The mechanics of community assembly and sucession. J. theor. Biol. 147: 213–233.

    Google Scholar 

  • Fox B. J. & J. H. Brown, 1993. Assembly rules for functional groups in North American desert rodent communities. Oikos 67: 358–370.

    Google Scholar 

  • Harris, G. P., 1994. Pattern, process and prediction in aquatic ecology. A limnological view of some general ecological problems. Freshwat. Ecol. 32: 143–160.

    Google Scholar 

  • Hastings, A., C. L. Hom, S. Ellner, P. Turchin & H. C. J. Godfray, 1993. Chaos in Ecology: Is Mother Nature a strange attractor?. Ann. Rev. Ecol. Syst. 24: 1–33.

    Google Scholar 

  • Inouye, R. S. & D. Tilman, 1995. Convergence and divergence of old-field vegetation after 11 years of nitrogen addition. Ecology 76: 1872–1887.

    Google Scholar 

  • Jassby, A. D., C. R. Goldman & T. M. Powell, 1992. Trend, seasonality, cycle and irregular fluctuations in primary productivity at Lake Tahoe, California-Nevada, U.S.A. Hydrobiologia 246: 195–203.

    Google Scholar 

  • Lampert, W. & U. Sommer, 1997. Limnoecology. Oxford University Press, New York: 382 pp.

    Google Scholar 

  • Likens, G. E. (ed.), 1987. Long-term Studies in Ecology. Springer-Verlag, New York: 214 pp.

    Google Scholar 

  • Margalef, R., 1983. Limnologia. Omega, Barcelona: 1010 pp.

    Google Scholar 

  • Mayr, E., 1982. The Growth of Biological Thought. Harvard University Press, Cambridge: 974 pp.

    Google Scholar 

  • Peters, R. H., 1991. A Critique for Ecology. Cambridge University Press, Cambridge: 366 pp.

    Google Scholar 

  • Powell, T. M., 1995. Physical and biological scales of variability in lakes, estuaries and the coastal ocean. In Powell, T. M. & J. H. Steele (eds), Ecological Time Series. Chapman & Hall, New York: 119–139.

    Google Scholar 

  • Putman, R. J., 1994. Community Ecology. Chapman & Hall, London: 178 pp.

    Google Scholar 

  • Putman, R. J. & S. D. Wratten, 1984. Principles of Ecology. University of California Press, Los Angeles: 388 pp.

    Google Scholar 

  • Reynolds, C., 1990. Temporal scales of variability in pelagic environments and the response of phytoplankyon. Freshwat. Biol. 23: 25–53.

    Google Scholar 

  • Reynolds, C., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf: 371 pp.

    Google Scholar 

  • Reynolds, C. S., 1998a. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 11–26.

    Google Scholar 

  • Reynolds, C. S., 1998b. The state of freshwater ecology. Freshwat. Biol. 39: 741–753.

    Google Scholar 

  • Rojo, C., 1998. Differential attributes of phytoplankton across trophic gradient: a conceptual landscape with gaps. Hydrobiologia 369/370 (Dev. Hydrobiol. 129): 1–9.

    Google Scholar 

  • Samuels, C. & J. A. Drake, 1997. Divergent perspectives on community convergence. TREE 12: 427–433.

    Google Scholar 

  • Sarnelle, O., 1996. Predicting the outcome of trophic manipulation in lakes. A comment on Harris (1994). Freshwat. Biol. 35: 339–342.

    Google Scholar 

  • Schindler, D. W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41.

    Google Scholar 

  • Seip, K. L. & C. Reynolds, 1995. Phytoplankton functional attributes along trophic gradient and season. Limnol. Oceanogr. 40: 589–597.

    Google Scholar 

  • Scheffer, M., 1991. Should we expect strange attractors behind plankton dynamics and if so, should we bother? J. Plankton Res. 13: 1291–1305.

    Google Scholar 

  • Sommer, U., 1990. Phytoplankton nutrient competition-from laboratory to lake. In Grace, J. B. (ed.), Perspectives on Plant Competition. Academic Press, Bristol: 198–213.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG model of seasonal succesion of planktonik events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Sugihara, G. & R. M. May, 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344: 734–741.

    Google Scholar 

  • Talling, J. F. & S. I. Heaney, 1988. Long-term changes in some Rnghish (Cumbria) lakes subjected to increased nutrien imputs. In Round, F. E. (ed.), Algae and the Aquatic Environment. Biopress, Bristol: 1–29.

    Google Scholar 

  • Taylor, F. J. R., 1993. The species problem and its impact on harmful phytoplankton studies. In Smayda, T. J. (ed.), Toxic Phytoplankton Blooms in the Sea. Elsevier Science Publishers, Amsterdam: 81–86.

    Google Scholar 

  • Trifonova, I., 1988. Oligotrophic-eutrophic succession of lake phytoplankton. In Round, F. E. (ed.), Algae and the Aquatic Environment. Biopress, Bristol: 107–124.

    Google Scholar 

  • Turchin, P. & A. D. Taylor, 1992. Complex dynamics in ecological time series. Ecology 73: 289–305.

    Google Scholar 

  • Weither, E., G. D. P. Clarke & P. A. Keddy, 1998. Community assembly rules, morphological dispersion and the coexistence of plant species. Oikos 81: 309–322.

    Google Scholar 

  • Weither, E & P. A. Keddy, 1995. Assembly rules, null models and trait dispersion: new questions from old patterns. Oikos 74: 159–164.

    Google Scholar 

  • Wilson, J. B. & S. Roxburgh, 1994. A demonstration of guildbased assembly rules for a plant community, and determination of intrinsic guilds. Oikos 69: 267–276.

    Google Scholar 

  • Wood, A. M. & T. Leatham, 1992. The species concept in phytoplankton ecology. J. Phycol. 28: 723–729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojo, C., Alvarez-Cobelas, M. A plea for more ecology in phytoplankton ecology. Hydrobiologia 424, 141–146 (2000). https://doi.org/10.1023/A:1003969415868

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003969415868

Navigation