Skip to main content
Log in

Theoretical analysis of chronoamperometric transients in electrochemical machining and characterization of titanium 6/4 and inconel 718 alloys

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An analytical expression is derived for the current–time transient for electrochemical machining (ECM) using a planar tool and workpiece configuration. This is obtained as a function of such parameters as the initial interelectrode gap, applied voltage, electrolytic conductivity, valency, density and feed rate. Good theoretical fits to experimental data are found for the alloys titanium 6/4 (Ti6/4) and Inconel 718 (In718) using both sodium chloride and sodium nitrate electrolytes, demonstrating the applicability of this theory. The values of the electrolytic molar conductivity obtained for chloride and nitrate are consistent with the expected conductivity obtained from molar conductivity measurements. The mean valency values obtained for Ti6/4 and In718 are 3.5 ± 0.2 and 3.0 ± 0.2, respectively. The fraction of the applied voltage used to drive the electrochemical surface reactions, V 0, has also been obtained. The variation in V 0 between alloys when using the same electrolyte and also for each alloy when using different electrolytes is attributed to differences in the thermodynamics of the removal of the metal from the surface metal oxide. For In718 using chloride electrolyte, an increase in V 0 is observed at higher applied voltages, consistent with a change in the electrochemical dissolution reaction. Analysis of the variation of V 0 at low applied voltages throughout the current–time transient has enabled the current–voltage characteristics of these surfaces electrochemical reactions to be determined, indicating Tafel behaviour. These data show this analysis to be a powerful methodology for understanding and measuring ECM characteristics under realistic ECM conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Risco and A.D. Davydov, J. Am. Soc. Mech. Eng. 64 (1993) 701.

    Google Scholar 

  2. M.A. El Dardery, Int. J. Machine Tool Design Res. 22(3) (1982) 147.

    Google Scholar 

  3. B. Kellock, J. Machinery and Product. Eng. 140(3604) (1982) 40.

    Google Scholar 

  4. O.V.K. Chetty and R.V. Murthy Radhakrishan, Trans. ASME J. Eng. Ind. 103(3) (1981) 341.

    Google Scholar 

  5. A.R. Mileham, S.J. Harvey and K.J. Stout, J. Wear 109 (1986) 207.

    Google Scholar 

  6. M. Datta, J. Res. Dev. 37(2) (1993) 207.

    Google Scholar 

  7. A.K. Karimov, J. Sov. Aeronautics 28(3) (1985) 105.

    Google Scholar 

  8. A.G. Makie, J. Math. Anal. Appl. 117(2) (1986) 548.

    Google Scholar 

  9. J. Kozak, L. Dabrowski, K. Lubkowski and M. Rozenek. Proceedings of the 13th International CAPE Conference, Warsaw (1997), p. 311.

  10. H. Tipton, Proceedings of the 5th International Confererence on ‘Advances in Machine Tool Design and Research’ (1964) p. 509.

  11. A.D. Davydov and V.D. Kanshcheev,Elektronnaya Obrabotka Materialov (1985) 80.

  12. H. Tipton,Machine. & Prod. Eng. (1968) 325.

  13. V.K. Jain and K.P. Rajurkar, Precision Eng. 13(2) (1991) 111.

    Google Scholar 

  14. M. Atkey, Indust. Robot 12(4) (1985) 231.

    Google Scholar 

  15. D.J. Jones, Chem. Brit. (1988) 1135.

  16. B. Wei and J. Kozak, Trans. NAMRI/SME 22 (1994) 147.

    Google Scholar 

  17. M. Datta and D. Landolt, Electrochim. Acta. 26(7) (1981) 899.

    Google Scholar 

  18. A.D. Davydov, E.N. Kiryak, A.N. Ryabova, V.D. Kashcheev, B.N. Kabanov, Elektronnaya Obrabotka Materialov 5 (1979) 19.

    Google Scholar 

  19. C.N. Larsson, in ‘Electrochemical. Machining’ edited by A.E. De Barr, D.A. Oliver (MacDonald, London, 1968), p. 108.

    Google Scholar 

  20. ‘CRC Handbook of Chemistry and Physics’, 74th edn, edited by D.R. Lide (CRC Press, Florida, USA, 1993).

  21. R.D. Harrison (Ed.), ‘Book of Data’, Nuffeld Advanced Science. (Penguin Books, Harmondsworth, UK, 1972).

    Google Scholar 

  22. F.J. DiSalvo and S.J. Clarke, Current Opinion Solid State & Mater. Sci. 1 (1996) 241.

    Google Scholar 

  23. M. Datta and D. Landolt, J. Electrochem. Soc. 122 (1975) 1466.

    Google Scholar 

  24. D. Landolt, R.H. Muller, C.W. Tobias, J. Electrochem. Soc. 118 (1971) 40.

    Google Scholar 

  25. J. Hives and I. Rousar, J. Appl. Electrochem. 23 (1993) 1263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mount, A., Eley, K. & Clifton, D. Theoretical analysis of chronoamperometric transients in electrochemical machining and characterization of titanium 6/4 and inconel 718 alloys. Journal of Applied Electrochemistry 30, 447–455 (2000). https://doi.org/10.1023/A:1003939403034

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003939403034

Navigation