Skip to main content
Log in

Application of EIS to the initial stages of atmospheric zinc corrosion

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports an experimental study of the initial stage of atmospheric zinc corrosion using ex situ electrochemical impedance spectroscopy (EIS) in methanol electrolyte. Compared with the traditional techniques for studying atmospheric corrosion, such as gravimetry, the EIS technique significantly reduced the exposure time for detectable corrosion at any relative humidity from several days to a few hours. The samples were first exposed to synthetic atmospheres with careful control of O2 and CO2 concentrations, relative humidity and temperature. EIS was then used to measure the polarization resistance (R p) of the exposed samples. The corrosion products were analysed by a combination of grazing-angle X-ray diffraction, Fourier transform infrared spectroscopy and photoelectron spectroscopy. Several interesting phenomena occurring in the initial stage of corrosion were demonstrated by studying the electrochemical properties of the surface layer formed on the zinc. At high values of relative humidity (RH 95–100%), with CO2 > 40 ppm, the R p of the surface film formed increased monotonically with time and relative humidity. At intermediate values of relative humidity (RH 50–85%) in the presence of CO2 (40–500 ppm), R p first increased with time, reached a maximum, then fell from the maximum value before again rising slowly. A brief description of the mechanism of atmospheric zinc corrosion is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.E. Graedel, J. Electrochem. Soc. 136 (1989) 193C.

    Google Scholar 

  2. J.M. Costa and M. Vilarrasa, Brit. Corros. J. 28 (1993) 117.

    Google Scholar 

  3. I. Odnevall and C. Leygraf, in W.W. Kirk and H.H. Lawson (Eds), ‘Atmospheric Corrosion’, ASTM STP 1239, (American Society for Testing and Materials, Philadelphia, PA, 1995), p. 215.

    Google Scholar 

  4. S. Oesch and M. Faller, Corros. Sci. 39 (1997) 1505.

    Google Scholar 

  5. D.R. Flinn, S.D. Cramer, J.P. Carter, D.M. Hurwitz and P.J. Linstrom, in R. Baboian, (Ed.), ‘Materials Degradation Caused by Acid Rain’, ACS Symposium 318, (American Chemical Society, Washington, DC, 1986), p. 119.

    Google Scholar 

  6. J.J. Friel, Corrosion 42 (1986) 422.

    Google Scholar 

  7. J.E. Svensson and L.G. Johansson, Corros. Sci. 34 (1993) 721.

    Google Scholar 

  8. J.E. Svensson and L.G. Johansson, J.Electrochem.Soc. 143 (1996) 51.

    Google Scholar 

  9. S. Cramer, J.P. Carter, P.J. Linstrom and D.R. Flinn, in S.W. Dean and T.S. Lee (Eds.), ‘Degradation of Metals in the Atmosphere’, ASTM STP 965 (American Society for Testing and Materials, Philadelphia, PA, 1988), p. 229.

    Google Scholar 

  10. V. Kucera and E. Mattsson, in F. Mansfeld (Ed.), ‘Corrosion Mechanisms’, (Marcel Dekker, New York, 1987), p. 211.

    Google Scholar 

  11. J.H. Wang, F.I. Wei and H.C. Shih, Corrosion 52 (1996) 600.

    Google Scholar 

  12. J.H. Wang, F.I. Wei and H.C. Shih, Corrosion 52 (1996) 900.

    Google Scholar 

  13. H.H. Lawson, in B.C. Syrett (Ed.), ‘Corrosion Testing Made Easy, Volume 4: Atmospheric Corrosion Testing Methods’, (NACE International, Houston, TX, 1995), p. 23.

    Google Scholar 

  14. F. Mansfeld, in W. Ailor (Ed.), ‘Atmospheric Corrosion’, (J. Wiley & Sons, New York, 1982), p. 139.

    Google Scholar 

  15. W. Feitknecht, Chem. Ind. 5 (1959) 1102.

    Google Scholar 

  16. R. Grauer and W. Feitknecht, Corros. Sci. 7 (1967) 629.

    Google Scholar 

  17. T. Falk, J.E. Svensson and L.G. Johansson, J. Electrochem. Soc. 145 (1998) 39.

    Google Scholar 

  18. I. Odnevall and C. Leygraf, Corros. Sci. 34 (1993) 1213.

    Google Scholar 

  19. R.E. Lobnig, D.J. Siconolfi, L. Psota-Kelty, G. Grundmeir, R.P. Frankenthal, M. Stratmann and J.D. Sinclair, J. Electrochem. Soc. 143 (1996) 1539.

    Google Scholar 

  20. J.C. Oung and H.C. Shih, Corros. Prevent. Control 44 (1997) 173.

    Google Scholar 

  21. C. Fiaud, M. Keddam, A. Kadri and H. Takenouti, Electrochim. Acta 32 (1987) 445.

    Google Scholar 

  22. M. Keddam, A. Hugot-Le-Goff, H. Takenouti, D. Thierry and M. C. Arevalo, Corros. Sci. 33 (1992) 1243.

    Google Scholar 

  23. X.G. Zhang and E.M. Valeriote, in W.W. Kirk and H.H. Lawson (Eds), ‘Atmospheric Corrosion’, ASTM STP 1239 (American Society for Testing and Materials, Philadelphia, PA, 1995), p. 230.

    Google Scholar 

  24. A. Nishikata, Y. Ichihara and T. Tsuru, Corros. Sci. 37 (1995) 897.

    Google Scholar 

  25. A. Nishikata, Y. Ichihara, Y. Hayashi and T. Tsuru, J. Electro-chem. Soc. 144 (1997) 1244.

    Google Scholar 

  26. N.D. Tomashov, Corrosion 20 (1964) 7t.

    Google Scholar 

  27. H.C. Shih, J.C. Oung, J.T. Hsu, J.Y. Wu and F.I. Wei, Mater. Chem. Phys. 37 (1994) 230.

    Google Scholar 

  28. L. Bai and B.E. Conway, J. Electrochem. Soc. 137 (1990) 3737.

    Google Scholar 

  29. G. Nonhebel and H. Hartley, Phil. Mag. 50 (1923) 729.

    Google Scholar 

  30. J. Banas, K.G. Schütze and E. Heitz, J. Electrochem. Soc. 133 (1986) 253.

    Google Scholar 

  31. W.F.K. Wynne-Jones, J. Phys. Chem. 31 (1927) 1657.

    Google Scholar 

  32. D. Persson and C. Leygraf, J. Electrochem. Soc. 142 (1995) 1459.

    Google Scholar 

  33. ‘NIST X-ray Photoelectron Spectroscopy Database’, NIST Stan-dard Reference Database 20 (US Department of Commerce, Gaithersburg, MD, 1989).

  34. P.V. Strekalov, V.V. Agafonov and Yu. N. Mikhailovs.kii, Prot. Met. 8 (1972) 521.

    Google Scholar 

  35. P.B.P. Phipps and D.W. Rice, in G.R. Brubaker and P.B.P. Phipps (Eds), ‘Corrosion Chemistry’, ACS Symposium Series Vol. 89 (American Chemical Society, 1979), p. 235.

  36. E.A. Anderson and M.L. Fuller, Met. Alloys 10 (1939) 282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, S., Sung, S., Hsien, C. et al. Application of EIS to the initial stages of atmospheric zinc corrosion. Journal of Applied Electrochemistry 30, 607–615 (2000). https://doi.org/10.1023/A:1003908219469

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003908219469

Navigation