, Volume 410, Issue 0, pp 97–102 | Cite as

Application of the `snapshot' methodology to a basin-wide analysis of phosphorus and nitrogen at stable low flow

  • M. Salvia
  • J.F. Iffly
  • P. Vander Borght
  • M. Sary
  • L. Hoffmann


The `snapshot' sampling methodology was applied to the spatial analysis of phosphorus and nitrogen concentrations and fluxes in the transnational upper Sûre watershed (Belgium–Luxembourg) during stable low discharge summer periods in 1991 and 1992. The results show clear differences in nitrogen concentrations and specific loads between agricultural and forested sub-basins, whereas for phosphorus the dependence on land use is less evident. The simultaneous measurement of stream discharge and nutrient concentrations permitted a quantitative evaluation of the input from point respectively diffuse sources and loads from the tributaries as well as the retention capacity by self-purification or sedimentation of the different phosphorus and nitrogen forms in the various sections of the Sûre river. The results illustrate the utility of the `snapshot' sampling as an important tool for an integrated watershed management.

`snapshot' methodology spatial analysis nutrient fluxes eutrophication Esch-sur-Sûre basin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beusen, A.H.W., O. Kleper & C.R. Meinardi, 1995. Modelling the flow of nitrogen and phosphorus in Europe: from loads to coastal seas. Wat. Sci. Tech. 31: 141-145.Google Scholar
  2. Decloux, J. P. & M. Sary, 1988. Campagnes d'étiage: objectifs, traitement et valorisation des données. Mosella XVIII (No. spécial annuel - parution 1991): 121-134.Google Scholar
  3. Dorioz, J.M., E. Pilleboue & A. Ferhi, 1989. Dynamique du phosphore dans les bassins versants: importance des phénomènes de rétention dans les sédiments. Wat. Res. 23: 147-158.Google Scholar
  4. Edwards, D.R., C.T. Haan, A.N. Sharpley, J.F. Murdoch, T.C. Daniel & P.A. Moore Jr., 1996. Application of simplified phosphorus transport models to pasture fields in Northwest Arkansas. Trans. ASAE 39: 489-496.Google Scholar
  5. Emde, W.v.d., H. Fleckseder, N. Matsché, F. Plahl-Wabnegg, G. Spatzierer, W. Stalzer & U. Wenninger, 1993. Sources of nitrogen and phosphorus in the catchment area of Neusiedlersee/Fertö, Austria/Hungary. Wat. Sci. Tech. 28: 101-110.Google Scholar
  6. Grayson, R.B., C.J. Gippel, B.L. Finlayson & B.T. Hart, 1997. Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow. J. Hydrol. 199: 121-134.Google Scholar
  7. House, W. A. & F. H. Denison, 1997. Nutrient dynamics in a lowland stream impacted by sewage effluent: Great Ouse, England. Sci. total Envir. 205: 25-49.Google Scholar
  8. Johnes, P.J. & R.A. Hodgkinson, 1998. Phosphorus loss from agricultural catchments: pathways and implications for management. Soil Use Manage. 14: 175-185.Google Scholar
  9. Line, D.E., R.A. McLaughlin, D.L. Osmond, G.D. Jennings, W.A. Harman, L.A. Lombardo & J. Spooner, 1998. Nonpoint sources. Wat. envir. Res. 70: 895-912.Google Scholar
  10. Merot, Ph. & P. Bruneau, 1992. Échelle spatiale représentative d'un bassin versant sur le plan géochimique. C.r. Acad. Sci., Paris, sér. II, 315: 1097-1103.Google Scholar
  11. Pilleboue, E., 1987. Origine, spéciation et modalités de transfert du phosphore et de l'azote dans un bassin versant. Ph.D. Thesis, Université de Paris: 251 pp.Google Scholar
  12. Roberts, G., 1997. The influence of sampling frequency on stream-flow chemical loads. J. CIWEM 11: 114-118.Google Scholar
  13. Schepers, J.S., G.E. Varvel & D.G. Watts, 1995. Nitrogen and water management strategies to reduce nitrate leaching under irrigated maize. J. Contam. Hydrol. 20: 227-239.Google Scholar
  14. Scholefield, D. & A.C. Stone, 1995. Nutrient losses in runoff water following application of different fertilisers to grassland cut for silage. Agr. Ecosyst. Envir. 55: 181-191.Google Scholar
  15. Schonter, R. & V. Novotny, 1993. Predicting attainable water quality using the ecoregional approach. Wat. Sci. Tech. 28: 149-158.Google Scholar
  16. Spooner, J. & D.E. Line, 1993. Effective monitoring strategies for demonstrating water quality changes from non-point source controls on a watershed scale. Wat. Sci. Tech. 28: 143-148.Google Scholar
  17. Svendsen, L.M., B. Kronvang, P. Kristensen & P. Græsbøl, 1995. Dynamics of phosphorus compounds in a lowland river system: importance of retention and non-point sources. Hydrol. Process. 9: 119-142.Google Scholar
  18. Taleb, A., 1997. Pollution diffuse ou localisée des eaux de la Senne en amont de Tubize (Belgique) par les nutriments. Ph.D. Thesis, Université Libre de Bruxelles: 239 pp.Google Scholar
  19. Wern, W. & H. P. Wodsak, 1995. The role of non-point nutrient sources in water pollution: present situation, countermeasures, outlook. Wat. Sci. Tech. 31: 87-97.Google Scholar
  20. Wolock, D. M., J. Fan & G. B. Lawrence, 1997. Effects of basin size on low-flow stream chemistry and subsurface contact time in the Neversink River watershed, New York. Hydrol. Process. 11: 1273-1286.Google Scholar
  21. Young, W.J., F.M. Marston & J.R. Davis, 1996. Nutrient exports and land use in Australian catchments. J. Env. Manage. 46: 142-161.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • M. Salvia
    • 1
    • 2
  • J.F. Iffly
    • 3
  • P. Vander Borght
    • 2
  • M. Sary
    • 3
  • L. Hoffmann
    • 4
  1. 1.1Centre de Recherche Public-Gabriel Lippmann, CREBSLuxembourgLuxembourg
  2. 2.2Fondation Universitaire LuxembourgeoiseArlonBelgium
  3. 3.1Centre de Recherche Public-Gabriel Lippmann, CREBSLuxembourgLuxembourg
  4. 4.Institut de Botanique (4Université de LiègeLiègeBelgium

Personalised recommendations