Skip to main content
Log in

Spatial variability in Mussels used to assess base level nitrogen isotope ratio in freshwater ecosystems

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater mussels have been used to establish base level nitrogen isotope ratio values (δ15N) used in trophic position and food web studies in freshwater ecosystems. In this study, we assess the variability introduced when using unionid mussels in this manner by investigating the spatial variation in δ15N values in mussels from different locations in shallow freshwater ponds, and also differences in δ15N in different tissue types in the mussels. Results from the analysis of adductor, foot and a section of the mantle tissues from mussels across all ponds showed that adductor tissue was consistently enriched by about 1‰ versus the mantle and foot. The foot showed the least variability which, coupled with ease in obtaining consistent samples, led us to select this tissue type for subsequent analysis. The six ponds included in the study had average mussel δ15N values ranging from 4.9‰ to 11.9‰. Four of the six ponds showed no significant within pond differences between δ15N values from mussels collected at different sampling sites. The range of mussel δ15N values obtained from within ponds showed that using data from a single mussel to assess baseline δ15N values would result in the introduction of a maximum error of 0.56 of a trophic level to subsequent trophic position calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aravena, R., L. Evans & J. A. Cherry, 1993. Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water 31: 180-186.

    Google Scholar 

  • Cabana, G. & J. B. Rasmussen, 1994. Modelling food chain structure and contaminant using stable nitrogen isoptopes. Natue 372: 255-257.

    Google Scholar 

  • Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl. Acad. Sci., U.S.A. 93: 10844-10847.

    Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim Acta 45: 341-351.

    Google Scholar 

  • Freyer, H. D. & A. I. M. Aly, 1974. Nitrogen-15 variations in fertilizer nitrogen. J. Environ. Qual. 3: 405-406.

    Google Scholar 

  • Fogel, M. A. & L. A. Cifuentes, 1993. Isotopic fractionation during primary production, In Engel, M. H. & S. A. Macko (eds), Organic Geochemistry, Plenum: 73-98.

  • Fry, B., 1988. Food web structure on Georges Bank from stable C, N and S isotopic compositions. Limnol. Oceanogr. 33: 1182-1190.

    Google Scholar 

  • Gu, B., D. M. Schell & V. Alexander, 1994. Stable carbon and nitrogen isotopic analysis of the plankton food web in a subarctic lake. Can. J. Fish. aquat. Sci. 51: 1338-1344.

    Google Scholar 

  • Heaton, T. H. E., 1986. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem. Geol. (Isot. Geosc. Sect.), 59: 87-102.

    Google Scholar 

  • Herron E. M. & L. T. Green, 1996. URI Watershed Watch: 1995. Contribution #3395, College of Resource Development, University of Rhode Island, Kingston, RI.

    Google Scholar 

  • Hesslein, R. H., M. J. Capel, D. E. Fox & K. A. Hallard, 1991. Stable isotopes of sulfur, carbon, and nitrogen as indicators of trophic level and fish migration in the lower Mackenzie River, Canada. Can. J. Fish. aquat. Sci. 48: 2258-2265.

    Google Scholar 

  • Hobson, K. A. & H. E. Welch, 1992. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 84: 9-18.

    Google Scholar 

  • Hobson, K. A. & H. E. Welch, 1995. Cannibalism and trophic structure in a high Arctic lake: insights from stable isotope analysis. Can. J. Fish. aquat. Sci. 52: 1195-1201.

    Google Scholar 

  • Keough, J. R., M. E. Sierzen & C. A. Hagley, 1996. Analysis of a Lake Superior coastal food web with stable isotope techniques. Limnol. Oceanogr. 41: 136-146.

    Google Scholar 

  • Kidd, K. A., R. H. Schindler, R. H. Hesslein & D. C.G. Muir, 1995. Correlations between stable nitrogen isotope ratios and concentrations of organochlorines in biota from a freshwater food web. Sci. Total Environ. 161: 381-390.

    Google Scholar 

  • Kiriluk, R. M., M. R. Servos, D. M. Whittle, G. Cabana & J. B. Rasmussen, 1995. Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE,Mirex and PCB in a Lake Ontario pelagic food web. Can. J. Fish. aquat. Sci. 52: 2660-2674.

    Google Scholar 

  • Kling, G. W. B. Fry & W. J. O'Brien, 1992. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology. 73: 561-566.

    Google Scholar 

  • Macko, S. A. & N. E. Ostrom, 1994. Pollution studies using stable isotopes. In Lajtha, K. & R. H. Michener (eds), Stable Isotopes in Ecology. Blackwell Scientific: 45-62.

  • Mariotti, A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303: 685-687.

    Google Scholar 

  • McMahon, R. F., 1991. Mollusca: Bivalvia, In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Harcourt, Brace Janovich, San Diego, CA: 367 pp.

    Google Scholar 

  • Minigawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48: 1135-1140.

    Google Scholar 

  • Pennock, J. R., J. M. Velinsky, J. M. Ludlam & J. H. Sharp, 1996. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: implications for δ15N dynamics under bloom conditions. Limnol. Oceanogr. 41: 451-459.

    Google Scholar 

  • Sholto-Douglas, A. D., J. G. Field, A.G. James & N. J. van der Merwe, 1991. 13C/12C and 15N/14N isotope ratios in the Southern Benguela Ecosystem: indicators of food web relationships among different size-classes of plankton and pelagic fish; differences between fish muscle and bone collagen tissues. Mar. Ecol. Prog. Ser. 78: 23-31.

    Google Scholar 

  • Sierzen, M. E., J. R. Keough & C. A. Hagley, 1996. Trophic analysis of ruffe (Gymnocephalus cernius) and white perch (Morone americana) in a Lake Superior coastal food web using stable isotope techniques. J. Great Lakes Res. 22: 436-443.

    Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 1996. A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecol. Monographs 66: 451-477.

    Google Scholar 

  • Wada, E., M. Terazaki, Y. Kabaya & T. Nemoto, 1987. 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Res. 34: 829-834.

    Google Scholar 

  • Wilbur, K. M. & C. M. Yonge, (eds), 1966. Physiology of Mollusca. New York: Academic Press: 309-343.

    Google Scholar 

  • Yoshioka, T. & E. Wada, 1994. A stable isotope study on seasonal food web dynamics in a eutrophic lake. Ecology 75: 835-846.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKinney, R.A., Lake, J.L., Allen, M. et al. Spatial variability in Mussels used to assess base level nitrogen isotope ratio in freshwater ecosystems. Hydrobiologia 412, 17–24 (1999). https://doi.org/10.1023/A:1003887913402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003887913402

Navigation