Skip to main content
Log in

Evolution: disjunct degeneration of immunological determinants

  • Published:
Geologie en Mijnbouw

Abstract

The dissolution of calcified invertebrate skeletons releases an elaborate mixture of proteins, glycoproteins and polysaccharides. These ‘skeletal matrix’ macromolecules are thought to play a major role in calcification and were widely used for phylogenetical studies. We tested the reactivity of water-soluble macromolecules from a wide range of invertebrate skeletons with two antisera raised against the shell matrix of the bivalve, Pinna nobilis. Projections of our results on the phylogenetical tree of Starobogatov (1992) show for the first time that, during evolution, antigenic determinants may degenerate in some stocks while they remain intact in others. The phylogenetic implications of these patterns of disjunct degeneration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamkewicz, S.L., M.G. Harasewych, J. Blake, D. Saudek & C.J. Bult 1997 A molecular phylogeny of the bivalve mollusks-Mol. Biol. Evol. 14: 619–629

    Google Scholar 

  • Clark, N.F. & A.N. Adams 1977 Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses-J. Gen. Virol. 34: 475–483

    Google Scholar 

  • Cohen, B.L. 1992 Utility of molecular phylogenetic methods: a critique of immuno-taxonomy-Lethaia 25: 441–442

    Google Scholar 

  • Collins, M.J., G.B. Curry, G. Muyzer, R. Quinn, T. Zomerdijk & P. Westbroek 1988 Sero-taxonomy of skeletal macromolecules in living terebratulid brachiopods-Histor. Biol. 1: 207–224

    Google Scholar 

  • Collins, M.J., G. Muyzer, P. Westbroek, G.B. Curry, P.A. Sandberg, S.J. Xu, R. Quinn & D. MacKinnon 1991a Preservation of fossil biopolymeric structures: conclusive immunological evidence-Geochim. Cosmochim. Acta 55: 2253–2257

    Google Scholar 

  • Collins, M.J., G. Muyzer, G.B. Curry, P. Sandberg & P. Westbroek 1991b Macromolecules in brachiopod shells: characterization and diagenesis-Lethaia 24: 387–397

    Google Scholar 

  • Collins, M.J., P. Westbroek, G. Muyzer & J.W. de Leeuw 1992 Experimental evidence for condensation reactions between sugars and proteins in carbonate skeletons-Geochim. Cosmochim. Acta 56: 1539–1544

    Google Scholar 

  • Cope, J.C.W. 1996 The early evolution of the Bivalvia. In: Taylor, J. (ed.) Origin and Evolutionary Radiation of the Mollusca-Oxford Univ. Press, Oxford: 361–370

    Google Scholar 

  • Crenshaw, M.A. 1972 The soluble matrix from Mercenaria mercenaria shell-Biomineralization 6: 6–11

    Google Scholar 

  • Endo, K., G.B. Curry, R. Quinn, M.J. Collins, G. Muyzer & P. Westbroek 1994 Re-interpretation of terebratulide phylogeny based on immunological data-Paleontology 37: 349–373

    Google Scholar 

  • Endo, K., D. Walton, R.A. Reyment & G.B. Curry 1995 Fossil intra-crystalline biomolecules of brachiopod shells: diagenesis and preserved geo-biological information-Org. Geochem. 23: 661–673

    Google Scholar 

  • Faye, L. & M.J. Chrispeels 1988 Common antigenic determinants in the glycoproteins of plants, molluscs and insects-Glycoconjugate J. 5: 245–256

    Google Scholar 

  • Gaffey, S.J. 1988 Water in skeletal carbonates-J. Sedim. Petrol. 58: 397–414

    Google Scholar 

  • Harlow, E. & D. Lane 1988 Antibodies, a Laboratory Manual-Cold Spring Harbor Lab. Publ., Cold Spring Harbor, NY

    Google Scholar 

  • Harte, M.E. 1992 A new approach to the study of bivalve evolution-Amer. Malacol. Bull. 9: 199–206

    Google Scholar 

  • Lowenstam, H.A. & S. Weiner 1989 On Biomineralization-Oxford Univ. Press, New York

    Google Scholar 

  • Lowenstein, J.M. & O.A. Ryder 1985 Immunological systematics of the extinct quagga (Equidae)-Experientia 41: 1192–1193

    Google Scholar 

  • Lowenstein, J.M. & G. Scheuenstuhl 1991 Immunological methods in molecular palaeontology-Phil. Trans. R. Soc. Lond. B 333: 375–380

    Google Scholar 

  • Marin, F., G. Muyzer & Y. Dauphin 1994 Caractérisation électrophorétique et immunologique des matrices organiques solubles des tests de deux bivalves ptériomorphes actuels, Pinna nobilis L. et Pinctada margaritifera (L.)-C. R. Acad. Sci. Paris (sér. II) 318: 1653–1659

    Google Scholar 

  • Morton, B. 1996 The evolutionary history of the Bivalvia. In: Taylor, J. (ed.) Origin and Evolutionary Radiation of the Mollusca. Oxford Univ. Press, Oxford: 337–359

    Google Scholar 

  • Muyzer, G., P. Westbroek, J.P.M. de Vrind, J. Tanke, T. Vrijheid, E.W. de Jong, J.W. Bruning & J.F. Wehmiller 1984 Immunology and organic geochemistry-Org. Geochem. 6: 847–855

    Google Scholar 

  • Muyzer, G. & P. Westbroek 1988 Phylogenetic implications and diagenetic stability of macromolecules from Pleistocene and recent shells of Mercenaria mercenaria (Mollusca, Bivalvia)-Histor. Biol. 1: 135–144

    Google Scholar 

  • Olsen-Stojkovich, J., J.A. West & J.M. Lowenstein 1986 Phylogenetics and biogeography in the Cladophorales complex (Chlorophyta): some insights from immunological distance data-Botan. Marina 29: 239–249

    Google Scholar 

  • Prager, E.M. & A.C. Wilson 1971 The dependence of immunological cross-reactivity upon sequence resemblance among lyzozymes-J. Biol. Chem. 246: 5978–5989

    Google Scholar 

  • Robbins, L.L., G. Muyzer & K. Brew 1993 Macromolecules from living and fossil biominerals. Implications for the establishment of molecular phylogenies. In: Engel, M.H. & S.A. Macko (eds) Organic Geochemistry. Plenum Press, New York: 799–816

    Google Scholar 

  • Salvini-Plawen, L. & G. Steiner 1996 Synapomorphies and plesiomorphies in higher classification of Mollusca. In: Taylor, J. (ed.) Origin and Evolutionary Radiation of the Mollusca. Oxford Univ. Press, Oxford: 29–51

    Google Scholar 

  • Sarich, V.M. & A.C. Wilson 1966 Quantitative immunochemistry and the evolution of primate albumins: microcomplement fixation-Science 154: 1563–1566

    Google Scholar 

  • Simon, A., M. Poulicek, R. Machiroux & J. Thorez 1990 Biodégradation anaérobique des structures squelettiques en milieu marin: II approche chimique-Cahiers Biol. Mar. 31: 365–384

    Google Scholar 

  • Starobogatov, Y.I. 1992 Morphological basis for phylogeny and classification of Bivalvia-Ruthenica 2: 1–25

    Google Scholar 

  • Waller, T.R. 1997 Origin of the molluscan class Bivalvia and a phylogeny of major groups. In: Johnston, P.A. & J.W. Haggart (eds) Bivalves: An Eon of Evolution, Univ. Calgary Press: 1–45

  • Weiner, S., L. Hood 1975 Soluble protein of the organic matrix of mollusc shells: a potential template for shell formation-Science 190: 987–989

    Google Scholar 

  • Weiner, S., H.A. Lowenstam, B. Taborek & L. Hood, L. 1979 Fossil mollusk shell organic matrix components preserved for 80 million years-Paleobiology 5: 144–150

    Google Scholar 

  • Weiner, S., W. Traub & H.A. Lowenstam 1983 Organic matrices in calcified exoskeletons. In: Westbroek, P. & E.W. de Jong (eds) Biomineralization and biological metal accumulation-D. Reidel Publ. Co., Dordrecht: 205–224

    Google Scholar 

  • Wheeler, A.P., K.W. Rusenko, D.M. Swift & C.S. Sikes 1988 Regulation of in vitro and in vivo CaCO3 crystallization by fractions of oyster shell organic matrix-Mar. Biol. 98: 71–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin, F., Gillibert, M., Westbroek, P. et al. Evolution: disjunct degeneration of immunological determinants. Geologie en Mijnbouw 78, 135–139 (1999). https://doi.org/10.1023/A:1003882928828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003882928828

Navigation