Skip to main content
Log in

Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Root morphology under well-watered conditions sampled on two occasions and under low-moisture stress was studied in a randomly chosen subset of 56 doubled haploid lines derived from a cross between IR64 and Azucena at two growth stages during the vegetative stage. A molecular map of the same population served as the basis for locating QTLs controlling root morphology and associated traits. The region flanking the RFLP markers RZ730 and RZ801 on chromosome 1 were associated with plant height in all three sampling environments. This position corresponds to sd-1 a semi-dwarfing gene. A total of 15 QTL were detected at the two developmental stages, of which only three QTL were common. Region flanked by RG157 and RZ318 (chromosome 2) contained QTL for root thickness under two different developmental stages. In total, 21 QTL for different traits were detected under low-moisture stress condition. While two QTL for plant height on chromosomes 1 and 3 were common, none of the loci for root morphological traits was common between the two different moisture regimes. The chromosomal segment between RG171 and RG157 contained QTL controlling tiller number per plant, total root length, root volume and total root number per plant. Absence of common QTL for root traits between two developmental stages and two moisture regimes suggests the existence of parallel genetic pathways operating at different growth stages and moisture regimes. Root volume and total root number per plant decreased significantly under stress, whereas maximum root length and plant height exhibited non-significant increases under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, L., 1999. Mapping quantitative trait loci for root traits related to drought resistance in rice (Oryza sativa L.) using AFLP markers. PhD Dissertation, Texas Tech University, Lubbock, USA.

    Google Scholar 

  • Aragon, E.L. & S.K. DeDatta, 1982. Drought response of rice at different irrigation levels using line source sprinkler system. Irrig Sci 3: 63-73.

    Article  Google Scholar 

  • Arraudeau, M.A., 1989. Breeding strategies for drought resistance. In: F.W.G Baker (Ed.), Drought Resistance in Cereals, pp. 107-116. CAB International, Wallingford, UK.

    Google Scholar 

  • Austin, D.F. & M. Lee, 1998. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci 38: 1296-1308.

    Article  CAS  Google Scholar 

  • Basten, C.J., B.Z. Zhao & S.W. Bruce, 1996. QTL Cartographer: a suite of programs for mapping QTL. Abstracts. Plant Genome IV International Conference on status of plant genome research, San Diego. Jan 14-18.

  • Beavis, W.D. & P. Keim, 1996. Identification of QTL that are affected by the environment. In: M.S. Kang & H.G. Hugh (Eds), New Perspective on Genotype-by-Enviroment interactions. CRC Press, Inc., Boca Raton, FL, USA.

    Google Scholar 

  • Bidinger, F.R. & J.R. Witcombe, 1989. Evaluation of specific drought avoidance as selection criteria for improvement of drought resistance. In: F.W.G. Baker (Ed.), Drought Resistance in Cereals, pp. 151-164. CAB International, Wallingford, UK

    Google Scholar 

  • Blum, A., 1982. Evidence of genetic variability in drought resistance in rice and its implication in plant breeding. In: Drought Resistance in Crops with Special Emphasis on Rice, pp. 52-70. Los Banos, International Rice Research Institute, Philippines.

    Google Scholar 

  • Blum, A., 1989. Breeding for drought resistance. In: H.G. Jones, T.J. Flowers & M.B. Jones (Eds), Plants under Stress-Biochemistry, Physiology and Ecology and their Application to Plant Improvement, pp. 211-216. Cambridge University Press, Cambridge.

    Google Scholar 

  • Brady, N.C., 1985. The nature and properties of soils. MacMillan publishing company, New York.

    Google Scholar 

  • Causse, M.A., T.M. Fulton, Y.G. Cho, S.N. Ahn, J. Chunwongse, K. Wu, J.Z. Xiao, P.C. Ronald, S.E. Harrington, G. Second, S.R. McCouch & S.D. Tanksley, 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251-1274.

    PubMed  CAS  Google Scholar 

  • Ceccarelli, S., 1987. Yield potential and drought tolerance of segregating populations of barley in contrasting environments. Euphytica 36: 265-273.

    Article  Google Scholar 

  • Ceccarelli, S. & S. Grando, 1993. From conventional plant breeding to molecular biology. International Crop Science I, Crop Science Society of America, Inc. Madison, WI 53711, USA, pp. 533-538.

    Google Scholar 

  • Champoux, M.C., G. Wang, S.S. Sarkarung, D.J. Mackill, J.C. O'Toole, N. Huang & S.R. McCouch, 1995. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90: 969-981.

    Article  CAS  Google Scholar 

  • Chen, X., S. Temykh, Y. Xu, Y.G. Cho & S.R. McCouch, 1997. Development of a microsatellite framework map providing genomewide coverage in rice (Oryza sativa L.). Theor Appl Genet 95: 553-567.

    Article  CAS  Google Scholar 

  • Cho, Y.G., M.Y. Eun, S.R. McCouch & Y.A. Chae, 1994. The semi-dwarf gene, sd-1, of rice (Oryza sativa L.) II. Molecular mapping and marker assisted selection. Theor Appl Genet 90: 54-59.

    Google Scholar 

  • Chopra, R.K. & S.K. Sinha, 1998. Prospects of success of biotechnological approaches for improving tolerance to drought stress in crop plants. Current Science 74(1): 25-34.

    Google Scholar 

  • Doerge, R.W., 1993. Statistical methods for locating quantitative trait loci using molecular markers. PhD Dissertation thesis. North Carolina State University, Raleigh, North Carolina. USA.

    Google Scholar 

  • Ekanayake, I.J., J.C. O'Toole, D.P. Garrity & T.N. Masajo, 1985. Inheritance of root characters and their relations to drought resistance in rice. Crop Sci 25: 927-933.

    Article  Google Scholar 

  • Fukai S. & M. Cooper, 1995. Development of drought resistant cultivars using physiomorphological traits in rice. Field Crop Res 40: 67-86.

    Article  Google Scholar 

  • Guiderdoni, E., E. Galinato, J. Luistro & G. Vergara, 1992. Anther culture of tropical japonica x indica hybrids of rice. Euphytica 62: 219-224.

    Article  Google Scholar 

  • Hanson, A.D., W.J. Peacock, L.T. Evans, C.J. Arntzen & G.S. Khush, 1990. Drought resistance in rice. Nature 234: 2.

    Google Scholar 

  • Hemamalini, G.S., 1997. Molecular mapping of low moisture stress induced response in rice (Oryza sativa L.) roots at peak vegetative stage. M.Sc. (Agri.) Thesis submitted to the University of Agricultural Sciences. GKVK, Bangalore 560 065, India.

    Google Scholar 

  • Huang, N., S.R. McCouch, S. Mew, A. Parco & E. Guiderdoni, 1994. Development of an RFLP map from a double haploid population in rice. Rice Genetics Newsletter 11: 134-137.

    Google Scholar 

  • Huang, N., A. Parco, T. Mew, G. Magpantay, S.R. McCouch, E. Guiderdoni, J. Xu, P. Subudhi, R.E. Angeles & G.S. Khush, 1997. RFLP mapping of isozymes, RAPD and QTLs for brown plant hopper resistance in a doubled haploid rice population. Mol Breed 3: 105-113.

    Article  CAS  Google Scholar 

  • Ingram, K.T., F.D. Bueno, O.S. Namuco, E.B. Yambao & C.A. Beyrouty, 1994. Rice root traits for drought resistance and their genetic variation. In: G.J.D. Kirk (Ed.), Rice Roots: Nutrient and Water Use, pp. 67-70. International Rice Research Institute, Manila, The Philippines.

    Google Scholar 

  • International Rice Research Institute, 1980. Annual report for 1979, IRRI, Los Banos, Philippines: 73-99.

    Google Scholar 

  • International Rice Research Institute, 1982. Annual report for 1981, IRRI, Los Banos, Philippines: 77-99.

    Google Scholar 

  • International Rice Research Institute, 1984. Annual report for 1983, IRRI, Los Banos, Philippines: 85-100.

    Google Scholar 

  • International Rice Research Institute, 1995. Challenges and opportunities in a less favorable ecosystem: Rainfed lowland rice, IRRI information series No. 1 IRRI, Los Banos, Philippines: 8-12.

    Google Scholar 

  • Kurata, N., Y. Nagamura, A. Yamamoto, Y. Harushima, N. Sue, J. Wu, B.A. Antonnio, A. Shomura, T. Shimizu, S.Y. Lin, T. Inoue, A. Fukuda, T. Shimona, Y. Kuboki, Y. Momma, Y. Umehara, M. Yano, T. Sasaki & Y. Minobe, 1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genetics 8: 365-372.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E.S., 1993. MAPMAKER/EXP 3.0 and MAPMAKER/ QTL 1.1. Whitehead Institute, 9, Cambridge, MA 02142, USA.

    Google Scholar 

  • Lebreton, C., V. Lazic-Jancic, A. Steed, S. Pekic & S.A. Quarrie, 1995. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46(288): 853-865.

    CAS  Google Scholar 

  • Lilley, J.M., M.M. Ludlow, S.R. McCouch & J.C. O'Toole, 1996. Locating QTL for osmotic adjustment and dehydration tolerance in rice. J Exp Bot 47(307): 1427-1436.

    CAS  Google Scholar 

  • Ludlow, M.M. & R.C. Muchow, 1990. A critical evaluation of traits for improving crop yields in water-limited environments. Adv in Agron 43: 107-153.

    Article  Google Scholar 

  • McCouch, S.R., G. Kochert, Z.H. Yu, Z.Y Wang, G.S. Khush, W.R. Coffman & S.D. Tanksley, 1988. Molecular mapping of rice chromosomes. Theor Appl Genet 76: 815-829.

    Article  CAS  Google Scholar 

  • McCouch, S.R., Y.G. Cho, M. Yano, E. Paul, M. Blinstrub, H. Morishima & T. Kinoshita, 1997. Report on QTL Nomenclature, RGN 14: 11-13.

    Google Scholar 

  • McWilliam, J.R., 1989. The dimensions of drought. In: F.W.G. Baker (Ed.), Drought Resistance in Cereals, pp. 1-11. CAB International, Wallingford, UK.

    Google Scholar 

  • Nguyen, H.T., R.C. Babu & A. Blum, 1997. Breeding for drought resistance in rice: physiology and molecular genetics considerations. Crop Sci 37: 1426-1434.

    Article  Google Scholar 

  • O'Toole, J.C., 1989. Breeding for drought resistance in cereals. In: F.W.G. Baker (Ed.), Drought Resistance in Cereals, pp. 107-116. CAB International, Wallingford, UK.

    Google Scholar 

  • O'Toole, J.C. & T.B. Moya, 1978. Genotypic variation in maintenance of leaf water potential in rice. Crop Sci 18: 873-876.

    Article  Google Scholar 

  • Paterson, A.H., S. Damon, J.D. Hewitt, D. Zamir, H.D. Rabinowitch, S.E. Lincoln & S.D. Tanksley, 1991. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics 127: 181-197.

    PubMed  CAS  Google Scholar 

  • Price, A.H. & A.D. Tomas, 1997. Genetic dissection of root growth in rice (Oryza sativa L.) II: mapping quantitative trait loci using molecular markers. Theor Appl Genet 95: 143-152.

    Article  CAS  Google Scholar 

  • Puckridge, D.W. & J.C. O'Toole, 1981. Dry matter and grain production of rice, using a line source sprinkler in drought studies. Field Crops Res 3: 303-319.

    Article  Google Scholar 

  • Ray, J.D., L. Yu, S.R. McCouch, M.C. Champoux, G. Wang & H.T. Nguyen, 1996. Mapping quantitative trait loci associated with root penetration abililty in rice. Theor Appl Genet 92: 627-633.

    Article  CAS  Google Scholar 

  • Saito, A., M. Yano, N. Kishimoto, M. Nakagahra, A. Yoshimura, K. Saito, S. Kuhara, Y. Ukai, M. Kawase, T. Nagamine, S. Yoshimura, O. Ideta, R. Ohsawa, Y. Hayano, M. Iwata & M. Sugiura, 1991. Linkage map of restriction fragment polymorphism loci in rice. Japan J Breed 41: 665-670.

    CAS  Google Scholar 

  • Salam, M.A. & S. Subramanian, 1988. Relationship between root weight and plant characters in rice in different seasons. Indian J of Agril Sci 58(9): 710.

    Google Scholar 

  • Shahid, M., T. Latif, N. Iqbal & M.A. Khan, 1994. Genetic studies on drought tolerance in rice. Sarhad Journal of Agriculture 10(6): 617-674.

    Google Scholar 

  • Stuber, C.W., S.E. Lincoln, D.W. Wolff, T. Helentjaris & E.S. Lander, 1992. Identification of genetic factors contributing to heterosis in hybrids from two elite maize inbred lines using molecular markers. Genetics 132: 823-839.

    PubMed  CAS  Google Scholar 

  • Xiao, J., J. Li, L. Yuan & S.D. Tanksley, 1996. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92: 230-244.

    Article  CAS  Google Scholar 

  • Yadav, R.S., B. Courtois & N. Huang, 1997. Mapping genes controlling root morphology in a doubled haploid population of indica x japonica cross of rice. Theor Appl Genet 94: 619-632.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K. & K. Shinozaki, 1997. Gene expression and signal transduction in water-stress response. Plant Physiol 115: 327-334.

    Article  PubMed  Google Scholar 

  • Yoshida, S. & S. Hasegawa, 1982. The rice root system: its development and function. In: Drought Resistance in Crops with Emphasis on Rice. IRRI, Philippines: 53-68.

    Google Scholar 

  • Zheng, H.G.,M.S. Pathan, R.C. Babu, L. Ali, N. Huang, B. Courtois & H.T. Nguyen, 1996. Molecular mapping of QTLs associated with root penetration ability in rice. Plant Genome IV, The international conference on the status of Plant Genome Research, San Diego, CA. Abstract no. P125.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemamalini, G., Shashidhar, H. & Hittalmani, S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica 112, 69–78 (2000). https://doi.org/10.1023/A:1003854224905

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003854224905

Navigation