Skip to main content
Log in

Resins for Combined Light and Electron Microscopy: A Half Century of Development

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

The last fifty years have seen enormous improvements in the way biological specimens are prepared for microscopy. The Fifties produced the essential groundwork upon which many of our current methodologies are based. Acrylic resin embedding was introduced in 1949, with subsequent publications seeking improvements to resin formulations, embedding protocols, and modes of polymerisation. Procedures for progressive lowering of temperature processing, cryosubstitution, freeze-drying and polymerisation by ultra-violet light at low temperatures, all had their genesis in this decade of great innovation. The Sixties marked the period when the acrylics were eclipsed by the more stable and reliable epoxy resins, and much of our present-day understanding of ultrastructure was elucidated. The Seventies carried on this work with advances in technical developments concerned mainly with freezing methodologies. The beginning of the Eighties saw a resurrection of the acrylic resins, with new formulations of these resins giving reliable and stable embeddings. The low temperature and freezing methodologies pioneered in the Fifties, backed up by recent improvements to low temperature technologies, were used to further our understanding of ultrastructure and breathe new life into the science of immunocytochemistry. The remainder of the Eighties and Nineties has seen the ever increasing application of these various microscopical techniques to a wide range of biological studies. The flexibility offered by the acrylic resins in choosing between different processing, embedding and polymerisation methods has provided the impetus for detailed studies to bring to the attention of microscopists the underlying trends governing specimen preparation. Therefore, looking forward to the new Millennium, this has allowed for a more reasoned choice in organising a strategy to deal with a variety of microscopical requirements and for planning an appropriate protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Acetarin J-D, Carlemalm E (1982) Chemical polymerisation methods for methacrylate. J Microsc (Oxford) 126: 140-141. Appendix in Carlemalm et al. (1982a).

    Google Scholar 

  • Acetarin J-D, Carlemalm E (1985) Lowicryl HM23 and K11M: two new embedding resins for very low temperature embedding. In: Carlemalm E, Villiger W, Kellenberger E, eds. Lowicryl Letters. Waldkraiburg, Germany: Chemische Werke Lowi, GmbH, pp. 2-4.

    Google Scholar 

  • Acetarin J-D, Carlemalm E, Villiger W (1986) Developments of new Lowicryl resins for embedding biological specimens at even lower temperatures. J Microsc (Oxford) 143: 81-88.

    Google Scholar 

  • Armbruster BL, Carlemalm E, Chiovetti R, Garavito RM, Hobot JA, Kellenberger E, Villiger W (1982) Specimen preparation for electron microscopy using low temperature embedding resins. J Microsc (Oxford) 126: 77-85.

    Google Scholar 

  • Armbruster BL, Kellenberger E, Carlemalm E, Villiger W, Garavito RM, Hobot JA, Chiovetti R, Acetarin JD (1984) Lowicryl resins — present and future applications. In: Revel JP, Barnard T, Haggis GH, eds. The Science of Biological Specimen Preparation for Microanalysis. Chicago, Il: SEM Inc., pp. 77-81.

    Google Scholar 

  • Baskin DG, Erlandsen SL, Parsons JA (1979) Influence of hydrogen peroxide or alcholic sodium hydroxide on the immunocytochemical detection of growth hormone and prolactin after osmium fixation. J Histochem Cytochem 27: 1290-1292.

    Google Scholar 

  • Bayer M, Peters D (1959) 'Plexigum’ ein neues Einbettungsmittel für die Elecktronenmikroskopie. J Ultrastruct Res 2: 444-452.

    Google Scholar 

  • Bendayan M (1984) Protein A-gold electron microscopic immuncytochemistry: methods, applications and limitations. J Electron Microsc Techn 1: 243-270.

    Google Scholar 

  • Bendayan M, Zollinger M (1983) Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J Histochem Cytochem 31: 101-109.

    Google Scholar 

  • Berryman MA, Rodewald RD (1990) An enhanced method for post-embedding immunocytochemical staining which preserves cell membranes. J Histochem Cytochem 38: 159-170.

    Google Scholar 

  • Borysko E, Sapranauskas P (1954) Newtechnique for comparative phase-contrast and electron microscope studies of cells grown in tissue culture, with evaluation of technique by means of time-lapse cinemicrographs. Bull Johns Hopkins Hosp 95: 68-79.

    Google Scholar 

  • Bowdler AL, Griffiths DFR, Newman GR (1989) The morphological and immunohistochemical analysis of renal biopsies by light and electron microscopy using a single processing method. Histochem J 21: 393-402.

    Google Scholar 

  • Carlemalm E, Kellenberger E (1982) The reproducible observation of unstained embedded cellular material in thin sections: visualisation of an integral membrane protein by a new mode of imaging for STEM. EMBO J 1: 63-67.

    Google Scholar 

  • Carlemalm E, Garavito RM, Villiger W (1982a) Resin development for electron microscopy and an analysis of embedding at low temperature. J Microsc (Oxford) 126: 123-143.

    Google Scholar 

  • Carlemalm E, Coliex C, Kellenberger E (1985a) Contrast formation in electron microscopy of biological material. Adv Electron Electron Phys 63: 269-334.

    Google Scholar 

  • Carlemalm E, Armbruster BL, Chiovetti R, Garavito RM, Hobot JA, Villiger W, Kellenberger E (1982b) Perspectives for achieving improved information by the observation of thin sections in the electron microscope. Tokai J Exp Clin Med 7(Suppl): 33-42.

    Google Scholar 

  • Causton BE (1980) The molecular structure or resins and its effect on the epoxy embedding resins. Proc Roy Microsc Soc 15: 185-189.

    Google Scholar 

  • Causton BE (1984) The choice of resin for electron immunocytochemistry. In: Polak JM, Varndell IM, eds. Immunolabelling for Electron Microscopy. Amsterdam: Elsevier, pp. 29-36.

  • Chiovetti R, Little SA, Brass-Dale J, Mcguffee LJ (1986) A new approach to low temperature embedding: quick freezing, freeze-drying and direct infiltration in Lowicryl K4M. In: Müller M, Becker RP, Boyde A, Wolosewick JJ eds., The Science of Biological Specimen Perparation for Microscopy and Microanalysis. AMF O'Hare, Chicago, Illinois: Scanning Electron Microscopy Inc., pp. 155-164.

    Google Scholar 

  • Chiovetti R, McGuffee LJ, Little SA, Wheeler-Clark E, Brass-Dale J (1987) Combined quick freezing, freeze-drying, and embedding tissue at low temperature and in low viscosity resin. J Electron Microsc Techn 5: 1-15.

    Google Scholar 

  • Coggi G, Dell'orto P, Grigalato PG, Sacchi G, Vialli G (1984) Immunoelectron microscopy of human renal biopsies: pre-requisites and limitations. Appl Pathol 2: 223-232.

    Google Scholar 

  • Douzou P (1977) Enzymology at sub-zero temperatures. Adv Enzymol 45: 157-272.

    Google Scholar 

  • Douzou P, Hoa GHB, Petsko GA (1975) Protein crystallography at subzero temperatures: lysozyme-substrate complexes in cooled mixed solvents. J Mol Biol 96: 367-380.

    Google Scholar 

  • Douzou P, Hoa GHB, Maurel P, Travers F (1976) Physical chemical data for mixed solvents used in low temperature biochemistry. In: Fasman GD, ed. Handbook of Biochemistry and Molecular Biology. 3rd edn., Cleveland, Ohio.: CRC Press Inc., pp. 520-539.

    Google Scholar 

  • Echlin P (1992) Low Temperature Microscopy and Analysis. New York: Plenum Press.

    Google Scholar 

  • Edelmann L (1986) Freeze-dried embedded specimens for microanalysis. In: Johari O, ed. Scanning Electron Microscopy. AMF O'Hare, Chicago, Illinois: Scanning Electron Microscopy Inc., pp. 1337-1356.

    Google Scholar 

  • Fernandez-Moran H (1960) Low temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann NY Acad Sci 85: 689-713.

    Google Scholar 

  • Fernandez-Moran H (1961) The fine structure of vertebrate and invertebrate photoreceptors as revealed by low temperature microscopy. In: Smelser GK, ed. The Structure of the Eye. New York: Academic Press, pp. 521-556.

    Google Scholar 

  • Garavito RM, Carlemalm E, Colliex C, Villiger W (1982) Septate junction ultrastructure as visualised in unstained and stained preparations. J Ultrastruct Res 80: 344-353.

    Google Scholar 

  • Glauert AM (1965) The fixation and embedding of biological specimens. In: Kay D, ed. Techniques for Electron Microscopy. 2nd edn. Oxford: Blackwell, Scientific Publications, pp. 166-212.

    Google Scholar 

  • Glauert AM (1975) Fixation, Dehydration, and Embedding of Biological Specimens. Practical Methods in Electron Microscopy, Vol 3, Part I. Amsterdam: Elsevier/North Holland.

    Google Scholar 

  • Glauert AM (1991) Epoxy resins: an update on their selection and use. Microsc Anal 25: 15-20.

    Google Scholar 

  • Glauert AM, Glauert RH (1958) Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol 4: 191-194.

    Google Scholar 

  • Glauert AM, Young RD (1989) The control of temperature during polymerisation of Lowicryl K4M: there is a low temperature method. J Microsc (Oxford) 154: 101-113.

    Google Scholar 

  • Glauert AM, Rogers GE, Glauert RH (1956) A new embedding medium for electron microscopy. Nature (London) 178: 803.

    Google Scholar 

  • Gounon P, Rolland JP (1998) Modification of Unicryl composition for rapid polymerisation at lowtemperature without alteration of immunocytochemical sensitivity. Micron 29: 293-296.

    Google Scholar 

  • Griffiths G, Hoppeler H (1986) Quantitation in immunocytochemistry: correlation of immunogold labeling to absolute number of membrane antigens. J Histochem Cytochem 34: 1389-1398.

    Google Scholar 

  • Griffiths G, Simons K,Warren G, Tokuyasu KT (1983) Immunoelectron microscopy using thin, frozen-sections — application to studies of the intracellular-transport of semliki forest virus spike glycoproteins. Meth Enzymol 96: 466-485.

    Google Scholar 

  • Hayat MA (1986) Glutaraldehyde: role in electron microscopy. Micron Microsc Acta 17: 115-135.

    Google Scholar 

  • Hayat MA (1993) Stains and Cytochemical Methods. New York: Plenum Press.

    Google Scholar 

  • Hobot JA (1989) The Lowicryls and low temperature embedding for colloidal gold methods. In: Hayat MA, ed. Colloidal Gold: Principles, Methods, and Applications. San Diego: Academic Press, pp. 75-115.

    Google Scholar 

  • Hobot JA (1990) New aspects of bacterial ultrastructure as revealed by modern acrylics for electron microscopy. J Struct Biol 104: 169-177.

    Google Scholar 

  • Hobot JA (1991) Low temperature embedding techniques for studying microbial cell surfaces. In: Mozes N, Handley P, Busscher HJ Rouxhet PG, eds. Microbial Cell Surface Analysis: Structural and Physico-Chemical Methods. New York: VCH Publishers, pp. 127-150.

    Google Scholar 

  • Hobot JA, Newman GR (1991) Strategies for improving the cytochemical and immunocytochemical sensitvity of ultrastructurally well-preserved, resin embedded biological tissue for light and electron microscopy. In: Roomans G, Edelmann L, eds. Scanning Microscopy. AMF O'Hare, Chicago, Illinois: Scanning Microscopy Intl., pp. S27-S41.

    Google Scholar 

  • Hobot JA, Newman GR (1996) Immunomicroscopy: Resin techniques and on-section labelling with immunocolloidal gold or immunoperoxidase — planning a protocol. Scan Microsc 10: 121-145.

    Google Scholar 

  • Hobot JA, Carlemalm E, Kellenberger E (1981) High resolution electron microscopy of stained vs unstained bacterial cell envelopes in CTEM and STEM. Experientia 37: 1226.

    Google Scholar 

  • Hobot JA, Felix HR, Kellenberger E (1982) Ultrastructure of permeabilised cells of Escherichia coli and Cephalosporium acremonium. FEMS Microbiol Lett 13: 57-61.

    Google Scholar 

  • Hobot JA, Carlemalm E, Villiger W, Kellenberger E (1984) Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J Bacteriol 160: 143-152.

    Google Scholar 

  • Humbel B, Müller M (1984) Freeze substitution and low temperature embedding. Proc 8th Eur Congr Electron Microsc 3: 1789-1798.

    Google Scholar 

  • Humbel B, Marti T, Müller M(1983) Improved structural preservation by combining freeze-substitution and low temperature embedding. Beitr Elektronmikrosk Direktabb Oberfl 16: 585-594.

    Google Scholar 

  • Idelman S (1964) Modification de la technique de Luft en vue de la conservation des lipides en microscopie électronique. J Microscopie 3: 715-718.

    Google Scholar 

  • Idelman S (1965) Conservation des lipides par les techniques utilisées en microscopie électronique. Histochemie 5: 18-23.

    Google Scholar 

  • Jorgensen AO, McGuffee LJ (1987) Immunoelectron microscopic localisation of sarcoplasmic reticulum proteins in cryofixed, freeze-dried, and low temperature embedded tissue. J Histochem Cytochem 35: 723-732.

    Google Scholar 

  • Kellenberger E (1991) The potential of cryofixation and freeze substitution: observations and theoretical considerations. J Microsc (Oxford) 161: 183-203.

    Google Scholar 

  • Kellenberger E, Carlemalm E, Villiger W, Roth J, Garavito RM (1980) Low Denaturation Embedding for Electron Microscopy of Thin Sections. Waldkraiburg, Germany: Chemische Werke Löwi GmbH.

    Google Scholar 

  • Kushida H (1961a) A new embedding method for ultrathin sectioning using a methacrylate resin with three dimensional polymer structure. J Electron Microsc 10: 194-200.

    Google Scholar 

  • Kushida H (1961b) A styrene-methacrylate resin embedding method for ultrathin sectioning. J Electron Microsc 10: 16-19.

    Google Scholar 

  • Kushida H (1962a) Uranyl nitrate as a catalyst for ultraviolet polymerisation in embedding. J Electron Microsc 11: 253.

    Google Scholar 

  • Kushida H (1962b) A study of cellular swelling and shrinkage during fixation, dehydration and embedding in various standard media. J Electron Microsc 11: 135-138.

    Google Scholar 

  • Kushida H (1963) A modification of the water-miscible epoxy resin ‘Durcupan’ embedding method for ultrathin sectioning. J Electron Microsc 12: 72-73.

    Google Scholar 

  • Linner JG, Livesey SA (1988) Low temperature molecular distillation drying of cryofixed biological samples. In: McGrath JJ, Diller KR, eds. Low Temperature Biotechnology: Emerging Applications and Engineering Contributions. New York: American Society of Mechanical Engineers, pp. 147-157.

    Google Scholar 

  • Livesey SA, Del Campo AA, McDowall AW, Stasny JT (1991) Cryofixation and ultra-low-temperature freeze-drying as a preparative technique for TEM. J Microsc (Oxford) 161: 205-215.

    Google Scholar 

  • Login GR, Dvorak AM (1994) The microwave tool book: A practical guide for microscopists. Boston: Beth Israel Hospital.

    Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9: 409-414.

    Google Scholar 

  • Maaløe O, Birch-Andersen A (1956) On the organization of the ‘nuclear material’ in Salmonella typhimurium. Symp Soc Gen Microbiol 6: 261-278.

    Google Scholar 

  • Manara GC, Preda P, Pasquinelli G, Ferrari C, De Panfilis G, Scala C (1993) The use of the new hydrophilic resin Bioacryl in dermatological investigations. Eur J Dermatol 3: 235-238.

    Google Scholar 

  • Mazzoti G, Zini N, Rizzi E, Rizzoli R, Galazani A, Ognibene A, Santi S, Matteucci A, Martelli AM, Maraldi NM (1995) Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J Histochem Cytochem 43: 181-191.

    Google Scholar 

  • Müller HR (1957) Gefriertrocknung als Fixierungs methode an Planzenzellen. J Ultrastruct Res 1: 109-137.

    Google Scholar 

  • Newman GR (1987) Use and abuse of LR White. Histochem J 19: 118-120.

    Google Scholar 

  • Newman GR (1989) LR White embedding medium for colloidal gold methods. In: Hayat MA, ed. Colloidal Gold: Principles, Methods, and Applications. San Diego: Academic Press, pp. 47-73.

    Google Scholar 

  • Newman GR, Jasani B (1984) Post-embedding immunoenzyme techniques. In: Polak JS, Varndell IM, eds. Immunolabelling for Electron Microscopy. Amsterdam: Elsevier, pp. 53-70.

    Google Scholar 

  • Newman GR, Hobot JA (1987) Modern acrylics for post-embedding immunostaining techniques. J Histochem Cytochem 35: 971-981.

    Google Scholar 

  • Newman GR, Hobot JA (1989) Role of tissue processing in colloidal gold methods. In: Mayat MA, ed. Colloidal Gold: Principles, Methods, and Applications. San Diego: Academic Press, pp. 33-45.

    Google Scholar 

  • Newman GR, Hobot JA (1993) Resin Microscopy and On-Section Immunocytochemistry. Berlin, Heidelberg, New York, London, Paris: Springer-Verlag.

    Google Scholar 

  • Newman GR, Jasani J (1998) Silver development in microscopy and bioanalysis: a new versatile formulation for modern needs. Histochem J 30: 635-645.

    Google Scholar 

  • Newman JB, Borysko E, Swerdlow M (1949) New sectioning techniques for light and electron microscopy. Science 110: 66-68.

    Google Scholar 

  • Newman GR, Jasani B, Williams ED (1982) The preservation of ultra-structure and antigenicity. J Microsc (Oxford) 127: RP5-RP6.

    Google Scholar 

  • Newman GR, Jasani B, Williams ED (1983a) A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope. Histochem J 15: 543-555.

    Google Scholar 

  • Newman GR, Jasani B, Williams ED (1983b) The visualisation of trace amounts of diaminobenzidine (DAB) polymer by a novel gold-sulphide-silver method. J Microsc (Oxford) 132: RP1-RP2.

    Google Scholar 

  • Newman GR, Jasani B, Williams ED (1986) Multiple hormone storage by polycrine cells in the pancreas (from a case of nesidioblastosis). Histochem J 18: 67-79.

    Google Scholar 

  • Newman GR, Jasani B, Williams ED (1989) Multiple hormone storage by cells of the human pituitary. J Histochem Cytochem 37: 1183-1192.

    Google Scholar 

  • Roth J (1983) Application of lectin gold complexes for electron microscopic localisation of glycoconjugates on thin sections. J Histochem Cytochem 31: 987-999.

    Google Scholar 

  • Roth J, Bendayan M, Carlemalm E, Villiger W, Garavito RM (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29: 663-671.

    Google Scholar 

  • Roth J, Taatjees DJ, Lucocq JN, Weinstein J, Paulson JC (1985) Demonstration of an extensive transtubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell (Cambridge, Mass) 43: 287-295.

    Google Scholar 

  • Ryter A, Kellenberger E (1958) L'inclusion au polyester pour l'ultramicrotomie. J Ultrastruc Res 2: 200-214.

    Google Scholar 

  • Scala C, Cenacchi G, Ferrari C, Pasquinelli G, Preda P, Manara GC (1992) A new acrylic resin formulation: a useful tool for histological, ultrastructural, and immunocytochemical investigations. J Histochem Cytochem 40: 1799-1804.

    Google Scholar 

  • Scala C, Preda P, Cenacchi G, Martinelli G, Manara GC, Pasquinelli G (1993) A new polychrome stain and simultaneous methods of histological, histochemical and immunohistochemical stainings performed on semi-thin sections of Biocryl-embedded human tissue. Histochem J 25: 670-677.

    Google Scholar 

  • Schwarz H, Humbel BM (1989) Influence of fixatives and embedding media on immunolabeling of freeze-substituted cells. In: Albrecht RM, Ornberg RL, eds. Scanning Microscopy Supplement 3. AMF O'Hare, Chicago, Illinois: Scanning Microscopy Intl., pp. 57-64.

    Google Scholar 

  • Spurr AR (1969) A low-viscosity resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31-43.

    Google Scholar 

  • Stäubli W (1963) A new embedding technique for electron microscopy, combining a water-soluble epoxy resin (Durcupan) with water-insoluble Araldite. J Cell Biol 16: 197-201.

    Google Scholar 

  • Steinbrecht RA (1982) Experiments on freeezing damage with freeze substitution using moth antennae as test objects. J Microsc (Oxford) 125: 187-192.

    Google Scholar 

  • Steinbrecht RA, Zierold K (1987) Cryotechniques in Biological Electron Microscopy. Berlin: Springer-Verlag.

    Google Scholar 

  • Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57: 551-565.

    Google Scholar 

  • Tokuyasu KT (1984) Immuno-cryoultramicrotomy. In: Polak JS Varndell IM, eds. Immunolabelling for Electron Microscopy. Amsterdam: Elsevier, pp. 71-82.

    Google Scholar 

  • Tokuyasu KT (1986) Application of cryoultramicrotomy to immunocytochemistry. J Microsc (Oxford) 143: 139-149.

    Google Scholar 

  • Tokuyasu KT (1989) Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J 21: 163-171.

    Google Scholar 

  • Voorhout W, Van Genderen I, Van Meer G, Geuze H (1991) Preservation and immunogold localization of lipids by freeze-substitution and low temperature embedding. In: Roomans G, Edelmann L, eds. Scanning Microscopy. Chicago, II: Scanning Microscopy Intl., pp. S17-S25.

    Google Scholar 

  • Ward RT (1958) Prevention of polymerization damage in methacrylate embedding media. J Histochem Cytochem 6: 398.

    Google Scholar 

  • Weibull C (1986) Temperature rise in Lowicryl resins during polymerization by ultraviolet light. J Ultrastruct Mol Struct Res 97: 207-209.

    Google Scholar 

  • Weibull C, Christiansson A (1986) Extraction of proteins and membrane lipids during low temperature embedding of biological material for electron microscopy. J Microsc (Oxford) 142: 79-86.

    Google Scholar 

  • Weibull C, Carlemalm E, Villiger W, Kellenberger E, Fakan J, Gautier A, Larsson C (1980) Low-temperature embedding procedures applied to chloroplasts. J Ultrastruct Res 73: 233-244.

    Google Scholar 

  • Weibull C, Christiansson A, Carlemalm E (1983) Extraction of membrane lipids during fixation, dehydration and embedding of Acholeplasma laidlawii cells for electron microscopy. J Microsc (Oxford) 129: 201-207.

    Google Scholar 

  • Weinreb S (1955) Ultraviolet polymerization of monomeric methacrylate for electron microscopy. Science 121: 774-775.

    Google Scholar 

  • Wroblewski J, Wroblewski R (1986) Why low temperature embedding for X-ray microanalytical investigations? A comparison of recently used preparation methods. J Microsc (Oxford) 142: 351-362.

    Google Scholar 

  • Wroblewski R, Wroblewski J, Wikström, S-O, Anniko M (1990) A low temperature vacuum embedding procedure for X-ray microanalysis of biological specimens at subcellular level. Scann Microsc 4: 787-793.

    Google Scholar 

  • Yoshimura N, Murachi T, Heath R, Kay J, Jasani B, Newman GR (1986) Immunogold electron microscopic localization of calpain I in skeletal muscle of rats. Cell Tissue Res 244: 265-270.

    Google Scholar 

  • Young RD, Lawrence PA, Duance VC, Aigner T, Monaghan P (1995) Immunolocalisation of Type III collagen in human articular cartilage prepared by high-pressure cryofixation, freeze-substitution, and low temperature embedding. J Histochem Cytochem 43: 421-427.

    Google Scholar 

  • Zini N, Maraldi NM, Martelli AM, Antonucci A, Santi P, Mazzotti G, Rizzoli R, Manzoli FA (1989) Phospholipase C digestion induces the removal of nuclear RNA: a cytochemical quantitative study. Histochem J 21: 491-500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, G.R., Hobot, J.A. Resins for Combined Light and Electron Microscopy: A Half Century of Development. Histochem J 31, 495–505 (1999). https://doi.org/10.1023/A:1003850921869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003850921869

Keywords

Navigation