Skip to main content
Log in

Introgressive hexaploid oats from the Avena abyssinica (♀) × A. sativa hybrid: performance, grain lipids and proteins

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A fertile hexaploid oat plant was obtained after several generations of selection for seed set and plant type from a colchicine-produced decaploid hybrid, Avena abyssinica(2n = 4x = 28, AABB) × A. sativa (2n = 6x = 42, AACCDD). The selected line proved to be stably fertile and in many characteristics equal or superior to the hexaploid parent. The grain protein fractions showed two qualitative differences from those of the pollen parent and several differences from the maternal parent. The fractionating extraction used was new for oats. The fatty acid composition of grains of the hybrid derivative was similar to that of the pollen parent, but different from that of the maternal parent. The maternal parent (A. abyssinica) had a relatively high 16:0 fatty acid content (ca. 20.5 mol%) compared with the level of the hexaploid parent and the hybrid derivation (ca. 17.5 mol% each) in field-grown grain. However, in grain produced in the greenhouse, the hexaploids had ca. 20.5 mol% of 16:0 fatty acid and a decrease in 18:1 fatty acid, whereas seed of the A. abyssinica parent showed only a slight increase (ca.21.5 mol%) in 16:0 fatty acid. These and other responses statistically significant may be due to adaptation to temperature conditions being wider in the hexaploids than in the East-African A. abyssinica. A new method of grain lipid extraction was introduced and showed good reproducibility. The derived hexaploid oat can be crossed with A. sativa for breeding purposes and due to its early maturity might also have direct use in northern or high-altitude cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaltonen, V.T., B. Aarnio, E. Hyyppä, P. Kaitera, L. Keso, E. Kivinen, P. Kokkonen, M.J. Kotilainen, M. Sauramo, P. Tuorila & J. Vuorinen, 1949. A critical review of soil terminology and soil classification in Finland in the year 1949. J Sci Agric Soc Finl 21: 55–66.

    Google Scholar 

  • Ahokas, H., 1978. A simple and rapid screening method for the determination of protein and tryptophan in kernel halves and small samples of barley meal. J Sci Food Agric 29: 47–52.

    CAS  Google Scholar 

  • Ahokas, H., 1994. Searching for DNA introgressed from wheat and for wheat-like grain proteins in a rice × wheat hybridization derivative. Euphytica 72: 177–182.

    Article  Google Scholar 

  • Ahokas, H., 1996. Unfecund, gigantic mutant of oats (Avena sativa) shows fecundity overdominance and difference in DNA methylation properties. Euphytica 92: 21–26.

    Article  Google Scholar 

  • Ahokas, H. & M. Poukkula, 1999. Malting enzyme activities, grain protein variation and yield potentials in the displaced genetic resources of barley landraces of Finland. Genet Resour Crop Evol 46: 251–260.

    Article  Google Scholar 

  • Appelqvist, L.-Å., 1968. Rapid methods of lipid extraction and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing the accumulation of lipid contaminants. Arkiv för Kemi 28: 551–570.

    CAS  Google Scholar 

  • Arias, J. & Frey, K.J., 1973. Selection for seed set in crosses of Avena sativa L.×A. abyssinica Hochst. Euphytica 22: 413–422.

    Article  Google Scholar 

  • Aung, T. & H. Thomas, 1978. The structure and breeding behaviour of a translocation involving the transfer of mildew resistance from Avena barbata Pott. into the cultivated oat. Euphytica 27: 731–739.

    Article  Google Scholar 

  • Baker, R.J. & R.I.H. McKenzie, 1972. Heritability of oil content in oats, Avena sativa L. Crop Sci 12: 201–202.

    Article  Google Scholar 

  • Baum, B.R., 1977. Oats: wild and cultivated. A monograph of the genus Avena L. (Poaceae). Agriculture Canada, Monograph No. 14.

  • Beringer, H., 1971a. Influence of temperature and seed ripening on the in vivo incorporation of 14CO2 into the lipids of oat grains (Avena sativa L.). Plant Physiol 48: 433–436.

    PubMed  CAS  Google Scholar 

  • Beringer, H., 1971b. An approach to the interpretation of the effect of temperature on fatty acid biosynthesis in developing seeds. Z Pflanzenernähr Bodenk 128: 115–122.

    CAS  Google Scholar 

  • Bertin, P., P. Bullens, J. Bouharmont & J.-M. Kinet, 1998. Somaclonal variation and chilling tolerance improvement in rice: changes in fatty acid composition. Plant Growth Regul 24: 31–41.

    Article  CAS  Google Scholar 

  • Bowyer, P., B.R. Clarke, P. Lunness, M.J. Daniels & A.E. Osbourn, 1995. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267: 371–374.

    PubMed  CAS  Google Scholar 

  • Brown, C.M., A.N. Aryeetey & S.N. Dubey, 1974. Inheritance and combining ability for oil content in oats (Avena sativa L.). Crop Sci 14: 67–69.

    Article  Google Scholar 

  • Emme, E.K., 1932. K izuchenijo tsitologii pentaploidnyh gibridov ovsov. Summary in German: Beitrag zur Zytologie der pentaploiden Haferbastarde. Trud Prikl Bot Genet Sel Ser 2(1): 169–176.

    Google Scholar 

  • Frey, K.J., 1994. Remaking a crop gene pool: the case history of Avena. Proc Natl Sci Counc ROC, Part B, Life Sci 18(2): 85–93.

    Google Scholar 

  • Fritz, S.E. & M.E. Sorrells, 1990. Effect of mass selection for seed density in populations derived from Avena abyssinica × A. sativa amphidecaploids. Euphytica 46: 85–93.

    Article  Google Scholar 

  • Greipsson, S., H. Ahokas & S. Vähämiko, 1997. A rapid adaptation to low salinity of inland-colonizing populations of the littoral grass Leymus arenarius. Int J Plant Sci 158: 73–78.

    Article  Google Scholar 

  • Harwood, J.L., 1994. Environmental factors which can alter lipid metabolism. Prog Lipid Res 33: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Hugly, S. & C. Somerville, 1992. A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99: 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson, J.B. & H.F. Martin, 1955. The chemical composition of oats. I. The oil and free fatty acid content of oats and groats. J Agric Sci 45: 411–418.

    Article  CAS  Google Scholar 

  • Kates, M., 1964. Simplified procedures for hydrolysis or methanolysis of lipids. J Lipid Res 5: 132–135.

    CAS  Google Scholar 

  • Katsiotis, A., M. Hagidimitriou & J.S. Heslop-Harrison, 1997. The close relationship between the A and B genomes in Avena L. (Poaceae) determined by molecular cytogenetic analysis of total genomic, tandemly and dispersed repetitive DNA sequences. Ann Bot 79: 103–109.

    Article  CAS  Google Scholar 

  • Kihara, H. & I. Nishiyama, 1932. The genetics and cytology of certain cereals. III. Different compatibility in reciprocal crosses of Avena, with special reference to tetraploid hybrids between hexaploid and diploid species. Jap J Bot 6: 245–305.

    Google Scholar 

  • Kodama, H., T. Hamada, G. Horiguchi, M. Nishimura & K. Iba, 1994. Genetic enhancement of cold tolerance by expression of a gene for chloroplast !-3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105: 601–605.

    PubMed  CAS  Google Scholar 

  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Lesik, F.L., 1948. Eksperimental'nyi sintez amfidiploidov ovsa. DokI Akad Nauk SSSR 60: 299–300.

    Google Scholar 

  • Lindberg, P., E. Tanhuanpää, G. Nilsson & L.Wass, 1964. The fattyacid composition of ripening grain. Acta Agric Scand 14: 297–306.

    Article  CAS  Google Scholar 

  • Marshall, H.G. & W.M. Myers, 1961. A cytogenetic study of certain interspecific Avena hybrids and the inheritance of resistance in diploid and tetraploid varieties to races of crown rust. Crop Sci 1: 29–34.

    Article  Google Scholar 

  • Martínez-Force, E., R. Álvarez-Ortega, S. Cantisán & R. Garcés, 1998. Fatty acid composition in developing high saturated sunflower (Helinathus annuus) seeds: maturation changes and temperature effect. J Agric Food Chem 46: 3577–3582.

    Article  Google Scholar 

  • Murata, N., N. Sato, N. Takahashi & Y. Hamazaki, 1982. Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 23: 1071–1079.

    CAS  Google Scholar 

  • Nishiyama, I., 1962. Cytogenetic studies in Avena. IX. New synthetic oats in the progenies of induced decaploid interspecific hybrids. Jap J Genet 37: 118–130.

    Google Scholar 

  • Nisius, A., 1988. The stromacentre in Avena plastids: an aggregation of β-glucosidase responsible for the activation of oat-leaf saponins. Planta 173: 474–481.

    Article  CAS  Google Scholar 

  • Rines, H.W., B.G. Gengenbach, K.L. Boylan & K.K. Storey, 1988. Mitochondrial DNA diversity in oat cultivars and species. Crop Sci 28: 171–176.

    Article  Google Scholar 

  • Sahasrabudhe, M.R., 1979. Lipid composition of oats (Avena sativa L.). J Amer Oil Chem Soc 56: 80–84.

    Article  CAS  Google Scholar 

  • Sarmiento, C., R. Garcés & M. Mancha, 1998. Oleate desaturation and acyl turnover in sunflower (Helianthus annuus L.) seed lipids during rapid temperature adaptation. Planta 205: 595–600.

    Article  CAS  Google Scholar 

  • Shapiro, A.L., E. Viñuela & J.V. Maizel, Jr., 1967. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun 28: 815–820.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, D.C., 1975. Chromosome pairing problems in interploidy transfer of leaf rust resistance in oats. Euphytica 24: 503–510.

    Article  Google Scholar 

  • Sharma, D.C., 1978. Disomic alien chromosome substitution and addition in hexaploid oat. Euphytica 27: 581–586.

    Article  Google Scholar 

  • Steer, M.W., 1975. Evolution in the genus Avena: inheritance of different forms of ribulose diphosphate carboxylase. Can J Genet Cytol 17: 337–344.

    CAS  Google Scholar 

  • Steer, M.W., J.H.W. Holden & B.E.S. Gunning, 1970. Avena chloroplasts: species relationships and the occurrence of stromacentres. Can J Genet Cytol 12: 21–27.

    Google Scholar 

  • Thomas, H. & D.A. Lawes, 1968. Evaluation of the use of species hybrids and synthetic amphiploids in the improvement of the oat crop. Euphytica 17: 404–413.

    Article  Google Scholar 

  • Thomas, H., J.M. Leggett & I.T. Jones, 1975. The addition of a pair of chromosomes of the wild oat Avena barbata (2n = 28) to the cultivated oat A. sativa L. (2n = 42). Euphytica 24: 717–724.

    Article  Google Scholar 

  • Welch, R.W., 1995. The chemical composition of oats. In: R.W. Welch (Ed), The Oat Crop, pp. 279–320, Chapman & Hall, London etc.

    Google Scholar 

  • Williams, J.P., M.U. Khan & D.Wong, 1996. Fatty acid desaturation in monogalactosyldiacylglycerol of Brassica napus leaves during low temperature acclimation. Physiol Plant 96: 258–262.

    Article  CAS  Google Scholar 

  • Williams, M., P.R. Shewry, D.W. Lawlor & J.L. Harwood, 1995. The effects of elevated temperature and atmospheric carbon dioxide concentration on the quality of grain lipids in wheat (Triticum aestivum L.) grown at two levels of nitrogen application. Plant Cell Environ 18: 999–1009.

    Article  CAS  Google Scholar 

  • Zillinsky, F.J., 1956. Cross compatibility relationships among some Avena species and polyploids. Can J Agric Sci 36: 107–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahokas, H., Manninen, ML. Introgressive hexaploid oats from the Avena abyssinica (♀) × A. sativa hybrid: performance, grain lipids and proteins. Euphytica 111, 153–160 (2000). https://doi.org/10.1023/A:1003850015682

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003850015682

Navigation