Skip to main content
Log in

Antisera Against Rat Recombinant Histidine Decarboxylase: Immunocytochemical Studies in Different Species

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Histamine is involved in many important biological processes such as allergic reactions, gastric acid secretion and neurotransmission. The formation of histamine is catalysed by the enzyme histidine decarboxylase. In order to understand the role of histamine in different tissues, information about the cellular localisation of the decarboxylase is important. However, the availability of antisera against the enzyme, which can be used in immunocytochemical techniques, has so far been limited, mainly due to the difficulties in purifying sufficient amounts of histidine decarboxylase from various tissues. In the present study we describe the use of antisera raised against rat recombinant histidine decarboxylase to localise the enzyme immunocytochemically in the gastric mucosa of different mammals and submammalian vertebrates. The antisera specifically stained histidine decarboxylase-immunoreactive cells in the gastric mucosa of not only rat, but also of species like frog, chicken, mouse and dog. This is the first report describing the immunocytochemical distribution of the decarboxylase in the gastric mucosa of species other than rat. These antisera are likely to become valuable tools for further studies of the immunocytochemical localisation of histidine decarboxylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Andersson K, Chen D, Håkanson R, Mattsson H, Sundler F (1992) Enterochromaffin-like cells in the rat stomach: effect of alpha-fluoromethylhistidine-evoked histamine depletion. A chemical, histochemical and electron-microscopic study. Cell Tissue Res 270: 7-13.

    Google Scholar 

  • Ando Yamamoto M, Hayashi H, Taguchi Y, Fukui H, Watanabe T, Wada H (1986) Demonstration of immunohistochemical and immunochemical cross-reactivity of L-histidine and L-dopa decarboxylases using antibodies against the two enzymes. Biochem Biophys Res Commun 141: 306-312.

    Google Scholar 

  • Aures D, Davidson WD, Håkanson R (1969) Histidine decarboxylase in gastric mucosa of various mammals. Eur J Pharmacol 8: 100-107.

    Google Scholar 

  • Aures D, Håkanson R, Owman C, Sporrong B (1968) Cellular stores of histamine and monoamines in the dog stomach. Life Sci 7: 1147-1153.

    Google Scholar 

  • Black JW, Duncan WAM, Durant CJ, Ganellin CR, Parsons ME (1972) Definition and antagonism of histamine H2-receptors. Nature 236: 385-390.

    Google Scholar 

  • Borelli MI, Villar MJ, Orezzoli A, Gagliardino JJ (1997) Presence of DOPA decarboxylase and its localisation in adult rat pancreatic islet cells. Diabetes Metab 23: 161-163.

    Google Scholar 

  • Costa M, Furness JB, Gibbins IL (1986) Chemical coding of enteric neurons. In:Hökfelt T, Fuxe K, Pernow B eds. Progress in Brain Research, Amsterdam: Elsevier, pp. 217-239.

    Google Scholar 

  • Dartsch C, Persson L (1998) Recombinant expression of rat histidine decarboxylase: generation of antibodies useful for Western blot analysis. Int J Biochem Cell Biol 30: 773-782.

    Google Scholar 

  • Dencker H, Kahlson G, Kockum I, Norryd C, Rosengren E (1973) Histamine metabolism in human gastric mucosa. Clin Sci Mol Med Suppl 42: 225-231.

    Google Scholar 

  • Dimaline R, Sandvik AK (1991) Histidine decarboxylase gene expression in rat fundus is regulated by gastrin. FEBS Lett 281: 20-22.

    Google Scholar 

  • Dockray GJ, Varro A, Dimaline R (1996) Gastric endocrine cells: gene expression, processing, and targeting of active products. Physiol Rev 76: 767-798.

    Google Scholar 

  • Håkanson R, Lilja B, Owman C (1969) Cellular localisation of histamine and monoamines in the gastric mucosa of man. Histochemie 18: 74-86.

    Google Scholar 

  • Håkanson R, TielemansY, Chen D, Andersson K, Ryberg B, Mattsson H, Sundler F (1992) The biology and pathobiology of the ECL cells. Yale J Biol Med 65: 761-774.

    Google Scholar 

  • Håkanson R, Bottcher G, Ekblad E, Panula P, Simonsson M, Dohlsten M, Hallberg T, Sundler F (1986) Histamine in endocrine cells in the stomach. A survey of several species using a panel of histamine antibodies. Histochemistry 86: 5-17.

    Google Scholar 

  • Henman FD (1975) Amino acid decarboxylase enzymes — vital or irrelevant to gastric secretion? Digestion 12: 157-178.

    Google Scholar 

  • Hirasawa N, Ohuchi K, Watanabe M, Tsurufuji S (1987) Role of endogenous histamine in postanaphylactic phase of allergic inflammation in rats. J Pharmacol Exp Ther 241: 967-973.

    Google Scholar 

  • Höcker M, Zhang ZS, Koh TJ, Wang TC (1996) The regulation of histidine decarboxylase gene expression. Yale J Biol Med 69: 21-33.

    Google Scholar 

  • Joseph DR, Sullivan PM, Wang YM, Kozak C, Fenstermacher DA, Behrendsen ME, Zahnow CA (1990) Characterization and expression of the complementary DNA encoding rat histidine decarboxylase. Proc Natl Acad Sci USA 87: 733-737.

    Google Scholar 

  • Kahlson G, Rosengren E (1968) New approaches to the physiology of histamine. Physiol Rev 48: 155-196.

    Google Scholar 

  • Kahlson G, Rosengren E (1971) Biogenesis and physiology of histamine. Monogr Physiol Soc 21: 1-318.

    Google Scholar 

  • Kahlson G, Rosengren E, Svahn D, Thunberg R (1964) Mobilization and formation of histamine in the gastric mucosa as related to acid secretion. J Physiol 174: 400-416.

    Google Scholar 

  • Konagaya M, Harasawa S, Hara M, Miwa T, Matsumoto M, Osamura Y (1988) Activity and distribution of histidine decarboxylase and histamine concentration in rat stomach. Tokai J Exp Clin Med 13: 239-244.

    Google Scholar 

  • Kubota H, Taguchi Y, Tohyama M, Matsuura N, Shiosaka S, Ishihara T, Watanabe T, Shiotani Y, Wada H (1984) Electron microscopic identification of histidine decarboxylase-containing endocrine cells of the rat gastric mucosa. An immunohistochemical analysis. Gastroenterology 87: 496-502.

    Google Scholar 

  • Larsson H, Carlsson E, Mattsson H, Lundell L, Sundler F, Sundell G, Wallmark B, Watanabe T, Håkanson R (1986) Plasma gastrin and gastric enterochromaffinlike cell activation and proliferation. Studies with omeprazole and ranitidine in intact and antrectomized rats. Gastroenterology 90: 391-399.

    Google Scholar 

  • Mizuguchi H, Yabumoto M, Imamura I, Fukui H, Wada H (1990) Immuno-cross-reactivity of histidine and dopa decarboxylases. Biochem Biophys Res Commun 173: 1299-1303.

    Google Scholar 

  • Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci USA 81: 2572-2576.

    Google Scholar 

  • Peter D, Liu Y, Sternini C, De Giorgio R, Brecha N, Edwards RH (1995) Differential expression of two vesicular monoamine transporters. J Neurosci 15: 6179-6188.

    Google Scholar 

  • Rubin W, Schwartz B (1979) Electron microscopic radioautographic identification of the ECL cell as the histamine-synthesizing endocrine cell in the rat stomach. Gastroenterology 77: 458-467.

    Google Scholar 

  • Ryberg B, Tielemans Y, Axelson J, Carlsson E, Håkanson R, Mattson H, Sundler F, Willems G (1990) Gastrin stimulates the self-replication rate of enterochromaffinlike cells in the rat stomach. Effects of omeprazole, ranitidine, and gastrin-17 in intact and antrectomized rats. Gastroenterology 99: 935-942.

    Google Scholar 

  • Sachs G, Zeng NX, Prinz C (1997) Physiology of isolated gastric endocrine cells. Annu Rev Physiol 59: 243-256.

    Google Scholar 

  • Shore PA, Burkhalter A, Cohn VH (1959) A method for the fluorometric assay of histamine in tissues. J Pharmacol Exptl Therap 127: 182-186.

    Google Scholar 

  • Simonsson M, Eriksson S, Håkanson R, Lind T, Lönroth H, Lundell L, O'Connor DT, Sundler F (1988) Endocrine cells in the human oxyntic mucosa.Ahistochemical study. Scand J Gastroenterol 23: 1089-1099.

    Google Scholar 

  • Taguchi Y, Watanabe T, Kubota H, Hayashi H, Wada H (1984) Purification of histidine decarboxylase from the liver of fetal rats and its immunochemical and immunohistochemical characterization. J Biol Chem 259: 5214-5221.

    Google Scholar 

  • Taguchi Y, Watanabe T, Shiosaka S, Tohyama M, Wada H (1985) Immunohistochemical analysis of the cross-reaction of anti-rat histidine decarboxylase antibody with guinea-pig DOPA decarboxylase. Brain Res 340: 235-242.

    Google Scholar 

  • Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295: 13-25.

    Google Scholar 

  • Watanabe T, Taguchi Y, Hayashi H, Tanaka J, Shiosaka S, Tohyama M, Kubota H, Terano Y, Wada H (1983) Evidence for the presence of a histaminergic neuron system in the rat brain: an immunohistochemical analysis. Neurosci Lett 39: 249-254.

    Google Scholar 

  • Zhao CM, Jacobsson G, Chen DA,Håkanson R, Meister B (1997) Exocytotic proteins in enterochromaffin-like (ECL) cells of the rat stomach. Cell Tissue Res 290: 539-551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dartsch, C., Sundler, F. & Persson, L. Antisera Against Rat Recombinant Histidine Decarboxylase: Immunocytochemical Studies in Different Species. Histochem J 31, 507–514 (1999). https://doi.org/10.1023/A:1003835905939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003835905939

Keywords

Navigation