Skip to main content
Log in

Electrochemical oxidation of benzene at a glassy carbon electrode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Benzene oxidation in sulfuric acid at a glassy carbon electrode was investigated using voltammetric, chronoamperometric, and spectroscopic methods. The results are compared with those at a Pt electrode. Benzene was observed to be oxidized to benzoquinone presumably by active oxygen that was adsorbed on the GC electrode in the oxygen evolution region. It is concluded that oxidation at glassy carbon can produce benzoquinone or quinone-like compounds from an aqueous benzene solution. The applied potential for benzene oxidation should be less than 2.1 V vs RHE in order to prevent glassy carbon electrode damage by oxidation during long operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Chuang, S. Cheng and S. Tong, Ind. Eng. Chem. Res. 31 (1992) 11.

    Google Scholar 

  2. A.J. Bard, W.M. Flarsheim and K.P. Johnston, J. Electrochem. Soc. 135 (1988) 8.

    Google Scholar 

  3. J.C. Farmer, F.T. Wang, R.A. Hawley-Fedder, P.R. Lewis, L.J. Summers and L. Foiles, J. Electrochem. Soc. 139 (1992) 654.

    Google Scholar 

  4. I. Yamanaka, T. Akimoto and K. Otsuka, Electrochim. Acta 39 (1994) 2545.

    Google Scholar 

  5. K. Otsuka, M. Kunieda and H. Yamgata, J. Electrochem. Soc. 139 (1992) 2381.

    Google Scholar 

  6. J.S. Clarker, R.E. Ehigamusoe and A.T. Kuhn, J. Electroanal. Chem. 70 (1976) 333.

    Google Scholar 

  7. M. Gattrell and D.W. Kirk, Canadian J. Chem. Eng. 68 (1990) 997.

    Google Scholar 

  8. A.J. Bard, W.M. Flarsheim and K.P. Jonston, J. Electrochem. Soc. 135 (1988) 1939.

    Google Scholar 

  9. S. Kihara, Z. Yoshida and H. Aoyagi, Bunseki Kagaku 40 (1991) 309.

    Google Scholar 

  10. K.W. Kim, E.H. Lee, J.H. Yoo, J. Appl. Electrochem. submitted.

  11. H. Holden Throp, J. Chem. Educ. 69 (1992) 250.

    Google Scholar 

  12. A. Proctor and P.M.A. Sherwood, Carbon 21 (1983) 53.

    Google Scholar 

  13. A.L. Belilby, T.A. Sasaki and H.M. Stern, Anal. Chem. 67 (1995) 976.

    Google Scholar 

  14. Allen J. Bard, ‘Encyclopedia of Electrochemistry of Elements’, Vol. 7 (Marcel Dekker, New York, 1976).

    Google Scholar 

  15. I. Yamanaka and K. Otsuka, J. Electrochem. Soc. 138 (1991) 1033.

    Google Scholar 

  16. G.E. Cabaniss, A.A. Diamantis, W.R. Murphy, Jr., W. Linton, and T.J. Meyer, J. Am. Chem. Soc. 107 (1985) 1845.

    Google Scholar 

  17. S. Ferro, F. Lavezzo, G. Lodi and A. DeBattisti, Extended Abstracts of the Electrochemical Society 193rd meeting, San Diego, Vol. 98–1 (1998) 874.

    Google Scholar 

  18. V. Smith, De Sugre and A.P. Watkinson, Can. J. Chem. Eng. 59 (1981) 52.

    Google Scholar 

  19. M. Gattrell and D. W. Kirk, J. Electrochem. Soc. 140 (1993) 1534.

    Google Scholar 

  20. M. Watanabe and S. Motoo, J. Electroanal. Chem. 60 (1975) 267.

    Google Scholar 

  21. M. Kuppuswamy, MS thesis, Case Western Reserve University, Cleveland, OH, USA (1998).

  22. J. O'M Bockris, H. Wroblow, E. Gileadi and B. J. Piersma, Trans. Faraday Soc. 61 (1965) 2531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KW., Kuppuswamy, M. & Savinell, R. Electrochemical oxidation of benzene at a glassy carbon electrode. Journal of Applied Electrochemistry 30, 543–549 (2000). https://doi.org/10.1023/A:1003822131632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003822131632

Navigation