Skip to main content
Log in

Genetic differentiation of endemic nile perch Lates stappersi (Centropomidae, Pisces) populations in Lake Tanganyika suggested by RAPD markers

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The genetic differentiation of endemic nile perch (Lates stappersi) populations in Lake Tanganyika was studied using RAPD. DNA was extracted from alcohol stored muscle tissue by a salting method, without organic solvents. Three primers amplified 58 variable DNA fragments from 270 individuals from five localities. The genetic distances of local samples as inverse of bandsharing ranged from 0.097 to 0.312. The population sampled in Kigoma, close to the estuary of the Malagarazi river showed high values of genetic distance in pairwise comparisons with other sampled populations. Principal component analysis separated the main population and the 25 samples from Kigoma with high eigenvalues. Five individuals sampled in Kigoma were united with the main population, as confirmed by significant differences in band frequences. The local population in Kigoma had significantly different frequencies in 24 RAPD bands when compared to the pooled samples of Lates stappersi. No clearly diagnostic fragments were found. The genetic distance (1-F) between the Kigoma population and the united main stock was 0.195. Based on Slatkin's index on private alleles, the level of migration between Kigoma and all other sampling sites united, migration is restricted (Nm = 0.43) and allows genetic separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aro, E. & P. Mannini, 1995. Results of fish population biology studies on Lake Tanganyika in July 1993–June 1994. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-TD/XX(En): 21pp.

  • Bernatchez, L., 1997. Mitochondrial DNA analysis confirms the existence of two glacial races of rainbow smelt Osmerus mordax and their reproductive isolation in the St Lawrence river estuary (Quebec, Canada). Mol. Ecol. 6: 73–83.

    Google Scholar 

  • Bielawski, J. P. & D. E. Pumo, 1997. Randomly ampilified polymorphic DNA (RAPD) analysis of Atlantic Coast striped bass. Heredity 78: 32–40.

    Google Scholar 

  • Boulenger, G. A., 1914. Mission Stappers au Tanganika-Moero. Diagnoses de poissons nouveaux: I Acanthoptérygiens, Opisthomes, Cyprinodontes. Rev. Zool. bot. afr. 3: 442–447.

    Google Scholar 

  • Carvalho, G. R. & L. Hauser, 1994. Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fish. 4: 326–350.

    Google Scholar 

  • Crosetti, D., W. S. Nelson & J. C. Avise, 1994. Pronounced genetic structure of mitochondrial DNA among populations of the circumglobally distributed grey mullet (Mugil cephalus). J. Fish Biol. 44: 47–58.

    Google Scholar 

  • Dinesh, K. R., T. M. Lim, K. L. Chua, W. K. Chan & V. P. E. Phang, 1993. RAPD analysis: an efficient method of DNA fingerprinting in fishes. Zool. Sci. 10: 849–54.

    Google Scholar 

  • Ellis, C. M. A., 1978. Biology of Luciolates stappersi in Lake Tanganyika (Burundi). Trans. Am. Fish. Soc. 107: 557–566.

    Google Scholar 

  • Grant, W. S. & F. M. Utter, 1984. Biochemical population genetics of Pacific herring (Clupea pallasi). Can. J. Fish. Aquat. Sci. 41: 856–864.

    Google Scholar 

  • Hadrys, H., M. Balick & B. Schiewater, 1992. Application of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1: 55–63.

    Google Scholar 

  • Hedgecock, D., E. S. Hutchinson, G. Li, F. L. Sly & K. Nelson, 1994. The central stock of northern anchovy (Engraulis mordax) is not a randomly mating population. CalCOFI Rep. 35: 121–136.

    Google Scholar 

  • Isabel, N., J. Beaulieu & J. Bousquet, 1995. Complete congruence between gene diversity estimates derived from genotypic data at enzyme and random amplified polymorphic DNA loci in black spruce. Proc. Natn. Acad. Sci. U.S.A. 92: 6369–6373.

    Google Scholar 

  • Jørstad, K. E., D. P. F. King & G. Naevdal, 1991. Population structure of Atlantic herring, Clupea harengus L. J. Fish Biol. 39A: 43–52.

    Google Scholar 

  • Miller, S. A., D. D. Dykes & H. F. Polesky, 1988. A simple salting– out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215.

    Google Scholar 

  • Naish, K. A., M. Warren, F. Bardacki, D. O. F. Skibinski, G. R. Carvalho & G.C. Mair, 1995. Multilocus fingerprinting and RAPD reveal similar genetic relationships between strains of Oreochromis niloticus (Pisces: Ciclidae). Mol. Ecol. 4: 271–274.

    Google Scholar 

  • Nei, M & W. H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natn. Acad. Sci. U.S.A. 76: 5269–5273.

    Google Scholar 

  • Norušis, M. J., 1995. SPSS® for WindowsTM. Advanced statistics, release 7.0. SPSS Inc. Chicago, Illinois, USA: 580 pp.

    Google Scholar 

  • Park, L. K. & P. Moran, 1994. Developments in molecular genetic techniques in fisheries. Rev. Fish Biol. & Fish. 4: 272–299.

    Google Scholar 

  • Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Google Scholar 

  • Roest, F. C., 1985. Predator-prey relations in northern Lake Tanganyika and fluctuations in the pelagic fish stocks. United Nations Food and Agriculture Organization, CIFA Symposium SAWG/85/WPI: 1–28.

  • Skroch, P. & J. Nienhuis, 1995. Impact of scoring error and reproducibility of RAPD data on RAPD based estimates of genetic distance. Theor. Appl. Genet. 91: 1086–1091.

    Google Scholar 

  • Slatkin, M. & N. H. Barton, 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1981. Biometry. Freeman, San Francisco: 859 pp.

    Google Scholar 

  • Smith, P. J., A. Jamieson & A. J. Birley, 1990. Electrophoretic studies and stock concept in marine teleosts. J. Cons. Int. Explor. Mer. 47: 231–45.

    Google Scholar 

  • Szmidt, A. E.,W. R. Wang & M. Z. Lu, 1996. Empirical assessmentof allozyme and RAPD variation in Pinus sylvestris (L.) using haploid tissue analysis. Heredity 76: 412–420.

    Google Scholar 

  • Tiercelin, J.-J. & A. Mondeguer, 1991. The geology of the Tanganyika Trough. In: G. W. Coulter (ed.), Lake Tanganyika and its Life. British Museum (Natural History): 7–48.

  • Tringali, M. D. & R. R. Jr., Wilson, 1993. Differences in haplotype frequencies of mtDNA of the Spanish sardine Sardinella aurita between specimens from the eastern Gulf of Mexico and Southern Brazil. Fish. Bull. U.S. 91: 362–370.

    Google Scholar 

  • Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski & S. V. Tingey, 1990. DNA-polymorphisms amplified by arbitrary primers as useful genetic markers. Nucleic Acids Res. 18: 6531-6535.

    Google Scholar 

  • Yu, K. & K. P. Pauls, 1993. Optimization of the PCR program for RAPD analysis. Nucleic Acids Res. 20(10): 2606.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuusipalo, L. Genetic differentiation of endemic nile perch Lates stappersi (Centropomidae, Pisces) populations in Lake Tanganyika suggested by RAPD markers. Hydrobiologia 407, 141–148 (1999). https://doi.org/10.1023/A:1003797700309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003797700309

Navigation