Skip to main content
Log in

Simulating the effects of biomanipulation on the food web of Lake Ringsjön

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A dynamic, process-oriented, deterministic and phosphorus-based model was developed to simulate the food web dynamics of Lake Ringsjön, in particular the long-term effects of biomanipulation in terms of reduction of omnivorous fish. The model contains 14 state variables, each with a differential equation describing sources and sinks of phosphorus. The state variables encompass piscivorous and omnivorous fish, zooplankton, phytoplankton, sediment and lake water. The model simulates densities of fish and phytoplankton adequately, both before and after biomanipulation, although the actual lake phytoplankton density varied more year-to-year compared to the model predictions. According to the model, a biomanipulation will cause an increase in zooplankton biomass. This prediction contradicts available field data from the lake which do not indicate any significant change in zooplankton biomass resulting from the performed biomanipulation. This discrepancy may partly be attributed to structural uncertainties in the model, related to the size structure of predators on zooplankton, i.e. the omnivorous fish community. The simulations suggest that phosphorus was routed along the pelagic food chain to a larger extent after omnivorous fish were removed, whereas the amount of phosphorus routed via the sediment and benthivorous fish decreased following fish removal. Accordingly, translocation of phosphorus from sediment to water by benthivorous fish is predicted to be substantially reduced by biomanipulation, resulting in an overall reduction in the release of new phosphorus to phytoplankton. Irrespective of simulated fishing effort (reduction of ≤0.5% d−1 for two years), the model predicts that P-release from the sediment and the external load will remain sufficiently high to force the system back to its previous state within a decade. Thus, recurrent biomanipulations and/or combined abatement strategies may be necessary to maintain low phytoplankton density. Known structural model uncertainties may however affect the robustness of such detailed predictions about the system resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and water chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.

    Google Scholar 

  • Benndorf, J., 1990. Conditions for effective biomanipulation: Conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200/201: 187–203.

    Google Scholar 

  • Bergman, E., S. F. Hamrin & P. Romare, 1999. The effects of cyprinid reduction on the fish community. Developments in Hydrobiology. Hydrobiologia 404: 65–75.

    Google Scholar 

  • Boström, B., 1982. Recycling of nutrients from lake sediment. Ph.D. thesis, University of Uppsala, Sweden.

    Google Scholar 

  • Brabrand, Å., B. A. Faafeng & J. P. M. Nilssen, 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can. J. Fish. Aquat. Sci. 47: 364–372.

    Google Scholar 

  • Burns, C. W., 1968. The relationship between body size of filterfeeding Cladocera and the maximum size particle ingested. Limnol. Oceanogr. 13:675–678.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639.

    Google Scholar 

  • Carpenter, S. R., C. E. Kraft, R. Wright, X. He, P. A. Soranno & J. R. Hodgson, 1992. Resilience and resistance of a lake phosphorus cycle before and after food web manipulation. Am. Nat. 140: 781–798.

    Google Scholar 

  • Craig, J. F., 1996. Pike. Biology and exploitation. Fish and Fisheries series 19. Chapman & Hall, London, U.K.

    Google Scholar 

  • Diehl, S., 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53: 207–214.

    Google Scholar 

  • Funtowicz, S. O. & J. R. Ravetz, 1992. The emergence of postnormal science. In R. Schomberg (ed.), Science, Politics and Morality. Scientific Uncertainty and Decision Making. Kluwer Academic Publishers: 85–123.

  • Gallepp, G. W., 1979. Chironomid influence on phosphorus release in sediment-water microcosms. Ecology 60: 547–556.

    Google Scholar 

  • Hamrin, S., 1999. Planning and execution of the fish reduction in Lake Ringsjön. Hydrobiologia 404: 59–63.

    Google Scholar 

  • Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P-Å. Nilsson & Ma. Søndergaard, 1998. Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1: 558–574.

    Google Scholar 

  • Hansson, L.-A., M. Enell & E. Bergman, 1999. Lake Ringsjön: its catchment area, its history and its importance. Hydrobiologia 404: 1–7.

    Google Scholar 

  • Horppila, J., 1994. Interactions between roach (Rutilus rutilus (L.)) stock and water quality in Lake Vesijärvi (southern Finland). Ph.D. thesis, University of Helsinki, Finland.

    Google Scholar 

  • Jasser, I., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21–32.

    Google Scholar 

  • Lamarra, V. A. Jr., 1975. Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh. Int. Ver. Limnol. 19: 2461–2468.

    Google Scholar 

  • Lammens, E. H. R. R., R. D. Gulati, M.-L. Meijer & E. van Donk, 1990. The first biomanipulation conference: a synthesis. Hydrobiologia 200/201: 617–627.

    Google Scholar 

  • Lessmark, O., 1983. Competition between perch (Perca fluviatilis) and roach (Rutilus rutilus) in south Swedish lakes. Ph.D. thesis, Inst. of Limnology, Lund Univ., Lund, Sweden. 172 pp.

    Google Scholar 

  • Moss, B., J. Stansfield, K. Irvine, M. G. Perrow & G. Phillips, 1996. Progressive restoration of a shallow lake: a 12-year experiment in isolation, sediment removal and biomanipulation. J. Appl. Ecology. 33: 71–86.

    Google Scholar 

  • Persson, A., 1997a. Effects of fish predation and excretion on the configuration of aquatic food webs. Oikos 79: 137–146.

    Google Scholar 

  • Persson, A., 1997b. Phosphorus release by fish in relation to external and internal load. Limnol. Oceanogr. 42: 577–583.

    Google Scholar 

  • Persson, A. & A. Barkman, 1997. Modelling lake food web dynamics. In A. Persson, Consumption Patterns and Excretion in Aquatic Food Webs. Ph.D. thesis. Dept. of Ecology, Limnology, Lund University, Sweden.

    Google Scholar 

  • Persson, A. & L.-A. Hansson, 1999. Diet shift in fish following competitive release. Can. J. Fish. Aquat. Sci. 56: 70–78.

    Google Scholar 

  • Persson, L., 1983. Food consumption and the significance of detritus and algae to intraspecific competition in roach (Rutilus rutilus) in a shallow eutrophic lake. Oikos 41: 118–125.

    Google Scholar 

  • Persson, L., G. Andersson, S. F. Hamrin & L. Johansson, 1988. Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In S. R. Carpenter (ed.), Complex Interactions in Lake Communities. Springer Verlag, New York, NY: 45–65.

    Google Scholar 

  • Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shift in fish communities along the productivity gradient of temperate lakes-patterns and the importance of size-structured interactions. J. Fish Biol. 38: 281–293.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Rosenzweig, M. L., 1971. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171: 385–387.

    Google Scholar 

  • Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1–28.

    Google Scholar 

  • Scavia, D., G. A. Lang & J. F. Kitchell, 1988. Dynamics of Lake Michigan plankton: a model evaluation of nutrient loading, competition, and predation. Can. J. Fish. Aquat. Sci. 45: 165–177.

    Google Scholar 

  • Scheffer, M., 1991. Fish and nutrient interplay determines algal biomass: a minimal model. Oikos 62: 271–282.

    Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.

    Google Scholar 

  • Schindler, D. E., J. F. Kitchell, X. He, S. R. Carpenter, J. R. Hodgson & K. L. Cottingham, 1993. Food web structure and phosphorus cycling in lakes. Trans. Am. Fish. Soc. 122: 756–772.

    Google Scholar 

  • Schindler, D. E., J. F. Kitchell, X. He, S. R. Carpenter, J. R. Hodgson & K. L. Cottingham, 1996. Food web structure and littoral zone coupling to pelagic trophic cascades. In G. A. Polis & K. O. Winemiller (eds), Food Webs: Integration of Patterns and Dynamics. Chapman & Hall, New York, NY: 96–105.

    Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase – making it stable. Hydrobiologia 200/201: 13–27.

    Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. In P. L. Brezonic & J. L. Fox (eds), Proc. Symp. on Water Quality Management Through Biological Control. University of Florida: 85–96.

  • Strand, J., 1999. The development of submerged macrophytes in Lake Ringsjön after biomanipulation. Hydrobiologia 404: 113–121.

    Google Scholar 

  • van Donk, E., M. P. Grimm, R. D. Gulati & J. P. G. Breteler, 1990. Whole-lake food-web manipulation as a means to study community interactions in a small ecosystem. Hydrobiologia 200/201: 275–289.

    Google Scholar 

  • Vanni, M. J., 1996. Nutrient transport and recycling by consumers in lake food webs: implications for algal communities. In G. A. Polis & K. O. Winemiller (eds.), Food Webs: Integration of Patterns and Dynamics. Chapman & Hall, New York, NY: 81–95.

    Google Scholar 

  • Vanni, M. J. & C. D. Layne, 1997. Nutrient recycling and herbivory as mechanisms in the 'top-down' effect of fish on algae in lakes. Ecology 78: 21–40.

    Google Scholar 

  • Vanni, M. J., C. D. Layne & S. E. Arnott, 1997. 'Top-down' trophic interactions in lakes: effects of fish on nutrient cycling. Ecology 78: 1–20.

    Google Scholar 

  • Vollenweider, A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mer. Ist. Ital. Idrobiol. 33: 53–83.

    Google Scholar 

  • Wetzel, R. G. & R. A. Hough, 1973. Productivity and role of aquatic macrophytes in lakes: an assessment. Pol. Arch. Hydrobiol. 20: 9–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Persson, A., Barkman, A. & Hansson, LA. Simulating the effects of biomanipulation on the food web of Lake Ringsjön. Hydrobiologia 404, 131–144 (1999). https://doi.org/10.1023/A:1003784832380

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003784832380

Navigation