Skip to main content

Plasticity of Drosophila melanogaster wing morphology: effects of sex, temperature and density

Abstract

In this paper we use an adjusted ellipse to the contour of the wings of Drosophila as an experimental model to study phenotypic plasticity. The geometric properties of the ellipse describe the wing morphology. Size is the geometric mean of its two radii; shape is the ratio between them; and, the positions of the apexes of the longitudinal veins are determined by their angular distances to the major axis of the ellipse. Flies of an inbred laboratory strain of Drosophila melanogaster raised at two temperatures (16.5°C and 25°C) and two densities (10 and 100 larvae per vial) were used. One wing of at least 40 animals of each sex and environmental condition were analyzed (total = 380), a measurement of thorax length was also taken. Wing size variation could be approximately divided into two components: one related to shape variation and the other shape independent. The latter was influenced primarily by temperature, while the former was related to sex and density. A general pattern could be identified for the shape dependent variation: when wings become larger they become longer and the second, fourth and fifth longitudinal veins get closer to the tip of the wing.

This is a preview of subscription content, access via your institution.

References

  1. Altatov, W.W., 1930. Phenotypical variation in body and cell size of Drosophila melanogaster. Biol. Bull. 58: 85–103.

    Google Scholar 

  2. Azevedo, B.R., A.C. James, J. McCabe & L. Partridge, 1998. Latitudinal variation of wing:thorax size ratio and wing-aspect ratio in Drosophila melanogaster. Evolution 52: 1353–1362.

    Article  Google Scholar 

  3. Barker, J.S.F. & R.A. Krebs, 1995. Genetic variation and plasticity of thorax length and wing length in Drosophila aldrichi and D. buzzatii. J. Evol. Bio. 8: 689–709.

    Article  Google Scholar 

  4. Bitner-Mathé, B.C., A.A. Peixoto & L.B. Klaczko, 1995. Morphological variation in a natural population of Drosophila mediopunctata: altitudinal cline, temporal changes and influence of chromosome inversions. Heredity 75: 54–61.

    PubMed  Google Scholar 

  5. Bitner-Mathé, B.C. & L.B. Klaczko, 1999. Size and shape heritability in natural populations of Drosophila mediopunctata: temporal and microgeographical variation. Genetica (in press).

  6. Cavicchi, S., C. Pezzoli & G. Giorgi, 1981. Correlation between characters as related to developmental pattern in Drosophila. Genetica 56: 189–195.

    Article  Google Scholar 

  7. D'Arcy Thompson, W., 1917. On Growth and Form. Cambridge University Press.

  8. David, J.R., B. Moreteau, J.P. Gauthier, G. Pétavy, A. Stockel & A.G. Imasheva, 1994. Reaction norms of size characters in relation to growth temperature in Drosophila melanogaster: an isofemale lines analysis. Genet. Sel. Evol. 26: 229–251.

    Google Scholar 

  9. Ebert, D., L. Yampolsky & Noordwijk, 1993. Genetics of life history in Daphnia magna. II Phenotypic plasticity. Heredity 70: 344–352.

    Google Scholar 

  10. Gavrilets, S. & S.M. Scheiner, 1993a. The genetics of phenotypic plasticity. 5. Evolution of reaction norm shape. J. Evol. Biol. 6: 31–48.

    Article  Google Scholar 

  11. Gavrilets, S. & S.M. Scheiner, 1993b. The genetics of phenotypic plasticity. 6. Theoretical predictions for directional selection. J. Evol. Biol. 6: 49–68.

    Article  Google Scholar 

  12. Grill, G., A.J. Moore & E.D. Brodie, 1997. The genetics of phenotypic plasticity in a colonizing population of the lady bird beetle Harmonia axyridis. Heredity 78: 261–269.

    Article  Google Scholar 

  13. Imasheva, A.G., O.A. Bubli, O.E. Lazebny & L.A. Zhivotovsky, 1995. Geographic differentiation in wing shape in Drosophila melanogaster. Genetica 96: 303–306.

    PubMed  CAS  Article  Google Scholar 

  14. James, A.C., R.B.R. Azevedo & L. Partridge, 1997. Genetic and environmental responses to temperature of Drosophila melanogaster from a latitudinal cline. Genetics 146: 881–890.

    PubMed  CAS  Google Scholar 

  15. Jansieski, M., F.J. Ayala & F.A. Bazzaz, 1997. Phenotypic plasticity and similarity of DNA among genotypes of an annual plant. Heredity 78: 176–181.

    Article  Google Scholar 

  16. Klaczko, L.B., 1995. Population Genetics of Drosophila mediopunctata. In: Genetics of Natural Populations: the Continuing Importance of Theodosius Dobzhansky, edited by L. Levine. Columbia University Press, New York.

    Google Scholar 

  17. Klaczko, L.B. & B.C. Bitner-Mathé, 1990. On the edge of a wing. Nature 346: 321.

    Article  Google Scholar 

  18. Kuo, T. & E. Larsen, 1987. The cellular basis of wing size modification in Drosophila: the effect of miniature gene, crowding, and temperature. Developmental Genetics 8: 91–98.

    Article  Google Scholar 

  19. Lerner, I.M., 1954. Genetic Homeostasis. Dover, New York.

  20. Masry, A.M. & F.W. Robertson, 1979. Cell size and number in the Drosophila wing. III. The influence of temperature differences during development. Egyptian J. Genet. Cyto. 8: 71–79.

    Google Scholar 

  21. Misra, R.K. & E.C.R. Revee, 1964. Clines in body dimensions in populations of Drosophila subobscura. Genet. Res. 5: 240–256.

    Google Scholar 

  22. Moed, G.H., G. de Jong & W. Scharloo, 1997a. Environmental effects on body size variation in Drosophila melanogaster and its cellular basis. Genet. Res. Cambridge 70: 35–43.

    Google Scholar 

  23. Moed, G.H., G. de Jong & W. Scharloo, 1997b. The phenotypic plasticity of wing size in Drosophila melanogaster: the cellular basis of its genetic variation. Heredity 79: 260–267.

    PubMed  Article  Google Scholar 

  24. Partridge, L., B. Barrie, K. Fowler & V. French, 1994. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 48: 1269–1276.

    Article  Google Scholar 

  25. Pigliucci, M. 1996. Modeling phenotypic plasticity. II. Do genetic correlations matter? Heredity 77: 453–460.

    PubMed  Google Scholar 

  26. Reed, S.C., C.M. Williams & L.E. Chadwick, 1942. Frequency of wing-beat as a character for separating species, races and geographic varieties of Drosophila. Genetics 27: 349–361.

    PubMed  CAS  Google Scholar 

  27. Robertson, F.W., 1959. Studies in quantitative inheritance. XII. Cell size and number in relation to genetic environmental variation of body size in Drosophila. Genetics 44: 869–896.

    PubMed  CAS  Google Scholar 

  28. Robertson, F.W., 1963. The ecological genetics of growth in Drosophila. 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet. Genet. Res. 4: 74–92.

    Article  Google Scholar 

  29. Robertson, F.W., 1987. Variation of body size within and between wild populations of Drosophila buzzatii. Genetica 72: 111–125.

    Article  Google Scholar 

  30. Scheiner, S.M. & R.F. Lyman, 1989. The genetics of phenotypic plasticity. I. Heritability. J. Evol. Biol. 2: 95–107.

    Article  Google Scholar 

  31. Scheiner, S.M. & R.F. Lyman, 1991. The genetics of phenotypic plasticity. II. Response to selection. J. Evol. Biol. 4: 23–50.

    Article  Google Scholar 

  32. Starmer, W.T. & L.L. Wolf, 1989. Causes of variation in wing loading among Drosophila species. Biol. J. Linnean Soc. 37: 247–261.

    Article  Google Scholar 

  33. Thomas, R.H., 1993. Ecology of body size in Drosophila buzzatii: untangling the effects of temperature and nutrition. Ecol. Entomol. 18: 84–90.

    Google Scholar 

  34. Waddington, C.H., 1941. The evolution of developmental systems. Nature 147: 108.

    Google Scholar 

  35. West-Eberhard, M.J., 1989. Phenotypic plasticity and the origins of diversity. Annual Rev. Ecol. Systemat. 20: 249–278.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

BitnerMathé, B.C., Klaczko, L.B. Plasticity of Drosophila melanogaster wing morphology: effects of sex, temperature and density. Genetica 105, 203 (1999). https://doi.org/10.1023/A:1003765106652

Download citation

  • density
  • developmental temperature
  • Drosophila melanogaster
  • morphometry
  • wing/thorax ratio