Skip to main content
Log in

Trophic structure of Lake Tanganyika: carbon flows in the pelagic food web

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The sources of carbon for the pelagic fish production in Lake Tanganyika, East Africa, were evaluated in a comprehensive multi-year study. Phytoplankton production was assessed from seasonal in situ 14C and simulated in situ results, using on-board incubator measurements and knowledge of the vertical distributions of chlorophyll and irradiance. Bacterioplankton production was measured on two cruises with the leucine incorporation method. Zooplankton production was calculated from seasonal population samples, the carbon contents of different developmental stages and growth rates derived from published sources. Fish production estimates were based on hydroacoustic assessment of pelagic fish biomass and data on growth rates obtained from length frequency analyses and checked against daily increment rings of fish otoliths. Estimates for primary production (426–662 g C m-2 a-1) were 47–128% higher than previously published values. Bacterioplankton production amounted to about 20% of the primary production. Zooplankton biomass (1 g C m-2) and production (23 g C m-2 a-1) were 50% lower than earlier reported, suggesting that the carbon transfer efficiency from phytoplankton to zooplankton was low, in contrast to earlier speculations. Planktivorous fish biomass (0.4 g C m-2) and production (1.4–1.7 g C m-2 a-1) likewise indicated a low carbon transfer efficiency from zooplankton into planktivorous fish production. Relatively low transfer efficiencies are not unexpected in a deep tropical lake, because of the generally high metabolic losses due to the high temperatures and presumably high costs of predator avoidance. The total fisheries yield in Lake Tanganyika in the mid-1990s was 0.08–0.14% of pelagic primary production, i.e. within the range of typical values in lakes. Thus, no special mechanisms need be invoked to explain the productivity of fisheries in Lake Tanganyika.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, K. R., 1971. Relation between production and biomass. J. Fish. Res. Bd Can. 28: 1573–1581.

    Google Scholar 

  • Allison, E. H., G. Patterson, K. Irvine, A. B. Thompson & A. Menz, 1995. The pelagic ecosystem. In A. Menz (ed.), The Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi/Niassa. Natural Resources Institute, Chatham, Kent, U.K.: 351–367.

    Google Scholar 

  • Aro, E. & P. Mannini, 1995. Results of fish population biology studies on Lake Tanganyika during July 1993–June 1994. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika GCP/RAF/271/FIN–TD/38 (En): 113 pp.

  • Baines, S. B. & M. L. Pace, 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems. Limnol. Oceanogr. 36: 1078–1090.

    Google Scholar 

  • Bosma, E. M., S. Muhoza & I. Zulu, 1998.The gulfnet sample results of five cruises with the R/V Tanganyika Explorer. FAO/FINNIDA Research for the Management of Fisheries on Lake Tanganyika GCP/RAF/271/FIN-TD/81 (En): 40 pp.

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Wegleńska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Burgis, M. J., 1984. An estimate of zooplankton biomass for Lake Tanganyika. Verh. int. Ver. Limnol. 22: 1199–1203.

    Google Scholar 

  • Chapman, D. W., H. Rufli, P. van Well & F. Roest, 1978. Lake Tanganyika fishery research and development project, Tanzania. Fishery biology and stock assessment. FAO, FI:DP/URT/71/012 Technical Report 1: 37 pp.

  • Chene, G., 1975. Etude des problemes relatifs aux fluctuations piscicoles du lac Tanganyika. Licentiate Thesis, Universite de Liege, Faculte des Sciences, Liege, 108 pp.

    Google Scholar 

  • Coenen, E. J. (ed.), 1995. LTRs fisheries statistics subcomponent: March 1995 update of results for Lake Tanganyika. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika GCP/RAF/271/FIN–TD/32 (En): 45 pp.

  • Coenen, E. J., P. Paffen & E. Nikomeze, 1998. Catch per unit of effort (CPUE) study for different areas and fishing gears of Lake Tanganyika. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika GCP/RAF/271/FIN–TD/80 (En): 92 pp.

  • Cole, J. J., S. Findlay & M. L. Pace, 1988. Bacterial production in freshwater and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43: 1–10.

    Google Scholar 

  • Coulter, G. W., 1970. Population changes within a group of fish species in Lake Tanganyika following their exploitation. J. Fish Biol. 2: 329–353.

    Google Scholar 

  • Coulter, G. W., 1977. Approaches to estimating fish biomass and potential yield in Lake Tanganyika. J. Fish Biol. 11: 393–408.

    Google Scholar 

  • Coulter, G. W., 1981. Biomass, production, and potential yield of the Lake Tanganyika pelagic fish community. Trans. am. Fish. Soc. 110: 325–335.

    Google Scholar 

  • Coulter, G. W. (ed), 1991. Lake Tanganyika and its life. British Museum (Natural History) and Oxford University Press, Oxford, 354 pp.

    Google Scholar 

  • Coulter, G. W., 1994. Lake Tanganyika. Arch. Hydrobiol. Beih. Ergebn. Limnol. 44: 13–18.

    Google Scholar 

  • Craig, J. F., 1997. A preliminary review of the LTR scientific sampling programme. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika GCP/RAF/271/FIN– TD/74 (En): 53 pp.

  • Degens, E. T. & V. Ittekkot, 1983. Dissolved organic matter in Lake Tanganyika and Lake Baikal – a brief survey. (SCOPE/UNEP Sonderband) Mitt. geol.-paläont. Inst. Univ. Hamburg 55: 129–143.

    Google Scholar 

  • Degens, E. T., R. P. von Herzen & H.-K. Wong, 1971. Lake Tanganyika. Water chemistry, sediments, geological structure. Naturwissenschaften 58: 229–241.

    Google Scholar 

  • Del Giorgio, P. A., J. J. Cole & A. Cimbleris, 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385: 148–151.

    Google Scholar 

  • Downing, J. A. & F. H. Rigler (eds), 1984. A manual on methods for the assessment of secondary productivity in fresh waters. IBP Handbook No 17, Blackwell, Oxford, 2nd edn., 501 pp.

    Google Scholar 

  • Downing, J. A., C. Plante & S. Lalonde, 1990. Fish production correlated with primary productivity, not the morphoedaphic index. Can. J. Fish. aquat. Sci. 47: 1929–1936.

    Google Scholar 

  • Edmond, J. M., R. F. Stallard, H. Craig, V. Craig, R. F. Weiss & G. W. Coulter, 1993. Nutrient chemistry of the water column of Lake Tanganyika. Limnol. Oceanogr. 38: 725–738.

    Google Scholar 

  • Edwards, R. R. C., 1984. Comparisons of growth in weight of temperate and tropical marine fish counterparts. Can. J. Fish. aquat. Sci. 41: 1381–1384.

    Google Scholar 

  • Frenette, J.-J., S. Demers, L. Legendre & J. Dodson, 1993. Lack of agreement among models for estimating the photosynthetic parameters. Limnol. Oceanogr. 38: 679–687.

    Google Scholar 

  • Hanek, G., 1994. Management of Lake Tanganyika fisheries. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika GCP/RAF/271/FIN–TD/25 (En): 21 pp.

  • Hart, R. C., 1994. Equiproportional temperature-duration responses and thermal influences on distribution and species switching in the copepods Metadiaptomus meridianus and Tropodiaptomus spectabilis. Hydrobiologia 272: 163–183.

    Google Scholar 

  • Hecky, R. E., 1984. African lakes and their trophic efficiencies: a temporal perspective. In D. G. Meyers & J. R. Strickler (eds), Trophic Interactions Within Aquatic Ecosystems. AAAS Selected Symposium 85: 405–448.

  • Hecky, R. E., 1991. The pelagic ecosystem. In G. W. Coulter, (ed.), Lake Tanganyika and Its Life. Oxford University Press, Oxford: 90–110.

    Google Scholar 

  • Hecky, R. E. & F. W. B. Bugenyi, 1992. Hydrology and chemistry of the African Great Lakes and water quality issues: problems and solutions. Mitt. int. Ver. Limnol. 23: 45–54.

    Google Scholar 

  • Hecky, R. E. & E. J. Fee, 1981. Primary production and rates of algal growth in Lake Tanganyika. Limnol. Oceanogr. 26: 532–547.

    Google Scholar 

  • Hecky, R. E., E. J. Fee, H. J. Kling & J. W. Rudd, 1978. Studies on the planktonic ecology of Lake Tanganyika. Canadian Depart172 ment of Fish and Environment. Fish. Mar. Service Techn. Report 816: 1–51.

  • Hecky, R. E., E. J. Fee, H. J. Kling & J. W. Rudd, 1981. Relationship between primary production and fish production in Lake Tanganyika. Trans. am. Fish. Soc. 110: 336–345.

    Google Scholar 

  • Houde, E. D. & E. S. Rutherford, 1993. Recent trends in estuarine fisheries: predictions of fish production and yield. Estuaries 16: 161–176.

    Google Scholar 

  • Huttula, T., V. Podsetchine, A. Peltonen, P. Kotilainen & H. Mölsä, 1994. Hydrology of Lake Tanganyika. In C. Kern-Hansen, D. Rosbjerg & R. Thomsen (ed), Nordic Hydrological Conference 1994, Tórshavn, Færøerne, 2–4 August 1994. NHP-report no. 34. Koordineringskomitéen for Hydrologi i Nordem (KOHYNO), København: 43–52.

    Google Scholar 

  • Hyvönen, K., 1997. Study on zooplankton development time at Lake Tanganyika. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika GCP/RAF/271/FIN–TD/78 (En): 12 pp.

  • Irvine, K., 1995. Standing biomasses, production and spatiotemporal distributions of the crustacean zooplankton. In A. Menz (ed.), The Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi/Niassa. Natural Resources Institute, Chatham, Kent, U.K.: 85–108.

    Google Scholar 

  • Irvine, K. & R. Waya, 1995. The zooplankton: General sampling methods and estimation of biomass and development rates. In A. Menz (ed.), The Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi/Niassa. Natural Resources Institute, Chatham, Kent, U.K.: 69–84.

    Google Scholar 

  • Irvine, K. & R. Waya, 1999. Spatial and temporal patterns of zooplankton standing biomass and production in Lake Malawi. Hydrobiologia 407: 191–205.

    Google Scholar 

  • Jassby, A. D. & T. Platt, 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21: 540–547.

    Google Scholar 

  • Järvinen, M., K. Salonen & J. Sarvala, 1996. Experiments on phytoplankton and bacterial production ecology in Lake Tanganyika: results of the first lake-wide cruise on R/V Tanganyika Explorer. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN–TD/44 (En): 43 pp.

  • Kimmerer, W. J. & A. D. McKinnon, 1986. Glutaraldehyde fixation to maintain biomass of preserved plankton. J. Plankton Res. 8: 1003–1008.

    Google Scholar 

  • Kimmerer, W. J., 1987. The theory of secondary production calculations for continuously reproducing populations. Limnol. Oceanogr. 32: 1–13.

    Google Scholar 

  • Kimura, S., 1995. Growth of the clupeid fishes, Stolothrissa tanganicae and Limnothrissa miodon, in the Zambian waters of Lake Tanganyika. J. Fish Biol. 47: 569–575.

    Google Scholar 

  • Kirchman, D. L., 1995. Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology: 509–512.

  • Kirk, J. T. O., 1983. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge, 401 pp.

    Google Scholar 

  • Kotilainen, P., T. Huttula & A. Peltonen, 1995. Lake Tanganyika hydrodynamics: results of March 1993–December 1994. GCP/RAF/271/FIN-TD/43(En): 97 pp.

  • Kurki, H., 1998. Results of plankton net and torpedo sampling during cruises on board R/V Tanganyika Explorer. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN–TD/85 (En): 32 pp.

  • Kurki, H., I. Vuorinen, E. Bosma & D. Bwebwa, 1999a. Spatial and temporal changes in copepod zooplankton communities of Lake Tanganyika. Hydrobiologia 407: 105–114.

    Google Scholar 

  • Kurki, H., P. Mannini, I. Vuorinen, E. Aro, H. Mölsä & O. V. Lindqvist, 1999b. Macrozooplankton communities in Lake Tanganyika indicate food chain differences between the northern part and the main basins. Hydrobiologia 407: 123–129.

    Google Scholar 

  • Langenberg, V., 1996. The physical limnology of Lake Tanganyika August–December 1995. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN–TD/54 (En): 63 pp.

  • Lindqvist, O. V. & H. Mikkola, 1989. Lake Tanganyika: review of limnology, stock assessment, biology of fishes and fisheries. Prepared for the Regional Project for the Management of Fisheries, Lake Tanganyika. Rome, FAO, GCP/RAF/229/FIN: 51 pp.

    Google Scholar 

  • Lohrenz, S. E., D. A. Wiesenburg, C. R. Rein, R. A. Arnone, C. D. Taylor, G. A. Knauer & A. H. Knap, 1992. A comparison of in situ and simulated in situ methods for estimating oceanic primary production. J. Plankton Res. 14: 201–221.

    Google Scholar 

  • Lowe-McConnell, R. H., F. C. Roest, G. Ntakimazi & L. Risch, 1994. The African great lakes. Ann. Mus. r. Afr. Centr., Zool. 275: 87–94.

    Google Scholar 

  • Mannini, P., 1998. Geographical distribution patterns of pelagic fish and macrozooplankton in Lake Tanganyika. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-TD/83 (En): 125 pp.

  • Mannini, P., E. Aro, I. Katonda, B. Kissaka, C. Mambona, G. Milindi, P. Paffen & P. Verburg, 1996. Pelagic fish stocks of Lake Tanganyika: biology and exploitation. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN-TD/53 (En): 85 pp.

  • Masundire, H. M., 1994. Mean individual dry weight and lengthweight regressions of some zooplankton of Lake Kariba. Hydrobiologia 272: 231–238.

    Google Scholar 

  • Mavuti, K. M., 1994. Durations of development and production estimates by two crustacean zooplankton species Thermocyclops oblongatus Sars (Copepoda) and Diaphanosoma excisum Sars (Cladocera), in Lake Naivasha, Kenya. Hydrobiologia 272: 185–200.

    Google Scholar 

  • Mengestou, S. & C. H. Fernando, 1991. Biomass and production of the major dominant crustacean zooplankton in a tropical Rift Valley lake, Awasa, Ethiopia. J. Plankton Res. 31: 831–851.

    Google Scholar 

  • Menz, A., A. Bulirani & C. M. Goodwin, 1995. Acoustic estimation of fish biomass. In A. Menz (ed.), The Fishery Potential and Productivity of the Pelagic Zone of Lake Malawi/Niassa. Natural Resources Institute, Chatham, Kent, U.K.: 307–349.

    Google Scholar 

  • Mölsä, H., E. Coenen, E. Reynolds & O. V. Lindqvist, 1999. Fisheries research towards resource management on Lake Tanganyika. Hydrobiologia 407: 1–24.

    Google Scholar 

  • Moreau, J., J. Munyandorero & B. Nyakageni, 1991. Evaluation des parametres démographiques chez Stolothrissa tanganykae et Limnothrissa miodon du lac Tanganyka. Verh. int. Ver. Limnol. 24: 2552–2558.

    Google Scholar 

  • Moreau, J., B. Nyakageni, M. Pearce & P. Petit, 1993. Trophic relationships in the pelagic zone of Lake Tanganyika (Burundi sector). In V. Christensen & D. Pauly (eds), Trophic Models of Aquatic Ecosystems. ICLARM Conf. Proc. 26: 138–143.

  • Morgan, N. C., T. Backiel, G. Bretschko, A. Duncan, A. Hillbricht-Ilkowska, Z. Kajak, J. F. Kitchell, P. Larsson, C. Lévêque, A. Nauwerck, F. Schiemer & J. E. Thorpe, 1980. Secondary production. In E. D. Le Cren & R. H. Lowe-McConnell (eds), The Functioning of Freshwater Ecosystems. Cambridge University Press, Cambridge: 247–340.

    Google Scholar 

  • Niemi, M., J. Kuparinen, A. Uusi-Rauva & K. Korhonen, 1983. Preparation of 14C-labeled algal samples for liquid scintillation counting. Hydrobiologia 106: 149–156.

    Google Scholar 

  • Nixon, S. W., 1988. Physical energy inputs and the comparative ecology of lake and marine ecosystems. Limnol. Oceanogr. 33: 1005–1025.

    Google Scholar 

  • Oglesby, R. T., 1977. Relationships of fish yield to lake phytoplankton standing crop, production, and morphoedaphic factors. J. Fish. Res. Bd Can. 34: 2271–2279.

    Google Scholar 

  • Ostrovsky, I., Y. Z. Yacobi, P. Walline & I. Kalikhman, 1996. Seiche-induced mixing: its impact on lake productivity. Limnol. Oceanogr. 41: 323–332.

    Google Scholar 

  • Pakkasmaa, S. & J. Sarvala, 1995. Preliminary study and growth of the pelagic clupeids in Lake Tanganyika estimated from daily otolith increments. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN– TD/35 (En): 29 pp.

  • Pauly, D. & V. Christensen, 1995. Primary production required to sustain global fisheries. Nature 374: 255–257.

    Google Scholar 

  • Plisnier, P.-D., V. Langenberg, L. Mwape, D. Chitamwebwa, K. Tshibangu & E. Coenen, 1999. An annual limnological cycle in Lake Tanganyika (1993-1994). Hydrobiologia, this volume.

  • Reynolds, C. S., 1990. Temporal scales of variability in pelagic environments and the response of phytoplankton. Freshwat. Biol. 23: 25–53.

    Google Scholar 

  • Riemann, B. & K. Christoffersen, 1993. Microbial trophodynamics in temperate lakes. Mar. micr. Food Webs 7: 69–100.

    Google Scholar 

  • Roest, F. C., 1977. Stolothrissa tanganicae: Population dynamics, biomass evaluation and life history in the Burundi waters of Lake Tanganyika. FAO, CIFA tech. Paper 5: 42–63.

    Google Scholar 

  • Roest, F. C., 1992. The pelagic fisheries resources of Lake Tanganyika. Mitt. int. Ver. Limnol. 23: 11–15.

    Google Scholar 

  • Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–183.

    Google Scholar 

  • Salonen, K., 1981. Rapid and precise determination of total inorganic and gaseous organic carbon in water. Water Res. 15: 403–406.

    Google Scholar 

  • Salonen, K. & J. Sarvala, 1985. Combination of freezing and aldehyde fixation, a superior preservation method for biomass determination of aquatic invertebrates. Arch. Hydrobiol. 103: 217–230.

    Google Scholar 

  • Salonen, K. & J. Sarvala, 1994. Sources of energy for secondary production in Lake Tanganyika. Objectives, approaches and initial experiences. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN–TD/26 (En): 30 pp.

  • Salonen, K. & J. Sarvala, 1995. Field manual for the determination of chlorophyll and primary production in Lake Tanganyika research. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN–FM/18 (En): 24 pp.

  • Salonen, K., J. Sarvala, I. Hakala & M.-L. Viljanen, 1976. The relation of energy and organic carbon in aquatic invertebrates. Limnol. Oceanogr. 21: 724–730.

    Google Scholar 

  • Salonen, K., J. Sarvala, M. Järvinen, V. Langenberg, M. Nuottajärvi, K. Vuorio & D. B. R. Chitamwebwa 1999. Phytoplankton in Lake Tanganyika – vertical and horizontal distribution of in vivo fluorescence. Hydrobiologia 407: 89–103.

    Google Scholar 

  • Sarvala, J. & K. Salonen, 1995. Preliminary experiments on phytoplankton production ecology in Lake Tanganyika. FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika. GCP/RAF/271/FIN–TD/36 (En): 38 pp.

  • Sarvala, J., H. Helminen & A. Hirvonen, 1994. The effect of intensive fishing on fish populations in Lake Pyhäjärvi, southwest Finland. In I. G. Cowx, (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Oxford: 77–89.

    Google Scholar 

  • Sarvala, J., T. Kairesalo, I. Koskimies, A. Lehtovaara, J. Ruuhijärvi & I. Vähä-Piikkiö, 1982. Carbon, phosphorus and nitrogen budgets of the littoral Equisetum belt in an oligotrophic lake. Hydrobiologia 86: 41–53.

    Google Scholar 

  • Sarvala, J., H. Helminen & H. Auvinen, 1998. Portrait of a flourishing freshwater fishery: Pyhäjärvi, a lake in SW-Finland. Boreal Envir. Res. 3: 329–345.

    Google Scholar 

  • Schindler, D. W., R. V. Schmidt & R. A. Reid, 1972. Acidification and bubbling as an alternative to filtration in determining phytoplankton production by the 14C method, J. Fish Res. Bd Can. 29: 1627–1631.

    Google Scholar 

  • Sprules, W. G., S. B. Brandt, D. J. Stewart, M. Munawar, E. H. Jin & J. Love, 1991. Biomass size spectrum of the Lake Michigan pelagic food web. Can. J. Fish. aquat. Sci. 48: 105–115.

    Google Scholar 

  • Szczucka, J., 1998. Acoustic estimation of fish abundance and their spatial distributions in Lake Tanganyika. FA/FINNIDA Research for the Management of the Fisheries of Lake Tanganyika. GCP/RAF/271/FIN-TD/84 (En): 63 pp.

  • Vuorinen, I. & H. Kurki, 1994. Preliminary results of zooplankton sampling in Lake Tanganyika. FAO/FINNIDA Research for the Management of the Fisheries of Lake Tanganyika. GCP/RAF/271/FIN–TD/22 (En): 37 pp.

  • Vuorinen, I., H. Kurki, E. Bosma, A. Kalangali, H. Mölsä & O. V. Lindqvist, 1999. Vertical distribution and migration of pelagic Copepoda in Lake Tanganyika. Hydrobiologia 407: 115–121.

    Google Scholar 

  • Weisse, T. & J. G. Stockner, 1993. Eutrophication: the role of microbial food webs. Mem. Ist. ital. Idrobiol. 52: 133–150.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. Second edition. Saunders College Publishing: 743 pp.

  • White, P. A., J. Kalff, J. B. Rasmussen & J. M. Gasol, 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb. Ecol. 21: 99–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarvala, J., Salonen, K., Järvinen, M. et al. Trophic structure of Lake Tanganyika: carbon flows in the pelagic food web. Hydrobiologia 407, 149–173 (1999). https://doi.org/10.1023/A:1003753918055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003753918055

Navigation