Skip to main content
Log in

Optimum production conditions for different high-quality marine algae

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The possibility of improving the growth rate of different high-quality marine algae was studied. Optimum culture conditions relative to salinities, temperatures and pH levels were defined for three species of Nannochloropsis, Tetraselmis and Isochrysis. In Nannochloropsis, the optimum production ranges were as follows: 20–40‰, 19–21 °C, without using CO2. The optimum conditions for Tetraselmis were: 20–35‰, 19–21 °C, without using CO2. For Isochrysis, the optimum conditions were: 25–35‰, 24–26 °C, also without using CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Rezq, T. S. & C. M. James, 1989. Evaluation of microbial SCP, microencapsulated diets and microalgae (Nannochloropsis) for aquaculture. J. Aqua. Trop. 4: 97–109.

    Google Scholar 

  • Abu-Rezq, T. S., J. Al-Shimmari & P. Dias, 1997. Live food production using batch culture and chemostat systems in Kuwait. Hydrobiologia 358: 173–178.

    Google Scholar 

  • Brown, M. R., C. D. Garland, S. W. Jeffrey, I. D. Jameson & J. M. Leroi, 1993. The gross and amino acid compositions of batch and semi-continuous cultures of Isochrysis sp. (clone T. ISO), Pavlova lutheri and Nannochloropsis oculata. J. Appl. Phycol. 5: 285–296.

    Google Scholar 

  • Brown, M. R. & C. L. Farmer, 1994. Riboflavin content of six species of microalgae used in mariculture. J. Appl. Phycol. 6: 61–65.

    Google Scholar 

  • Corsini, M. & M. Karydis, 1990. An algal medium based on fertilizers and its evaluation in mariculture. J. Appl. Phycol. 2: 333–339.

    Google Scholar 

  • Fabregas, J., C. Herrero, J. Abalde & B. Cabezas, 1985. Growth, chlorophyll a and protein of the marine microalga Isochrysis galbana in batch cultures with different salinities and high nutrient concentrations. Aquaculture 50: 1–11.

    Google Scholar 

  • Fabregas, J., C. Herrero, B. Cabezas & J. Abalde, 1986. Biomass production and biochemical composition in mass cultures of the marine microalga Isochrysis galbana Parke at varying nutrient concentrations. Aquaculture 53: 101–113.

    Google Scholar 

  • Ferreiro, M. J., M. J. Fernandez-Reiriz, M. Planas, U. Labarta & J. L. Garrido, 1991. Biochemical composition of enriched and starved rotifers. Larvi '91 – Fish and Crustacean Larviculture Symposium. Europ. Aqua. Soc., Special Publication No. 15: 36–38.

  • Gatesoupe, F. J. & J. H. Robin, 1981. Commercial single-cell proteins either as sole food source or in formulated diets for intensive and continuous production of rotifers (Brachionus plicatilis). Aquaculture 25: 1–15.

    Google Scholar 

  • Gopinathan, C. P., 1986, Differential growth rates of micro-algae in various culture media. Indian J. Fish. 33(4): 450–456.

    Google Scholar 

  • Herrero, C., A. Cid, J. Fabregas & J. Abalde, 1991. Yields in biomass and chemical constituents of four commercially important marine microalgae with different culture media. Aqua. Eng. 10: 99–110.

    Google Scholar 

  • Hirayama, K. & H. Funamoto, 1983. Supplementary effect of several nutrients on nutritive deficiency of baker's yeast for population growth of the rotifer Brachionus plicatilis. Bull. Jpn. Soc. Sci. Fish. 49: 505–510.

    Google Scholar 

  • James, C. M., M. Bou-Abbas, A. M. Al-Khars, S. Al-Hinty & A. E. Salman, 1983. Production of the rotifer Brachionus plicatilis for aquaculture in Kuwait. Hydrobiologia 104: 77–84.

    Google Scholar 

  • James, C. M., A. M. Al-Khars, S. Al-Hinty & M. B. Abbas, 1986. Manual on Live Food Production for Aquaculture, 2nd edn. Kuwait: Kuwait Inst. Sci. Res.

    Google Scholar 

  • James, C. M. & T. S. Abu-Rezq, 1988. Effect of different cell density of Chlorella capsulata and a marine Chlorella sp. for feeding the rotifer Brachionus plicatilis. Aquaculture 69: 43–56.

    Google Scholar 

  • James, C. M., A. M. Al-Khars & P. Chorbani, 1988. pH dependent growth of Chlorella in a continuous culture system. J. World Aqua. Soc. 19: 27–35.

    Google Scholar 

  • James, C. M. & T. Abu-Rezq, 1989a. Intensive rotifer cultures using chemostats. Hydrobiologia 186/187 (Dev. Hydrobiol. 52): 423–430.

    Google Scholar 

  • James, C. M. & T. Abu-Rezq, 1989b. An intensive chemostats culture system for the production of rotifers for aquaculture. Aquaculture 81: 291–301.

    Google Scholar 

  • James, C. M., S. Al-Hinty & A. E. Salman, 1989. Growth and ?3 fatty acid and amino acid composition of microalgae under different temperature regimes. Aquaculture 77: 337–351.

    Google Scholar 

  • James, C. M. & T. Abu-Rezq, 1990. Efficiency of rotifer chemostats in relation to salinity regimes for producing rotifers for aquaculture. J. Aqua. Trop. 5: 103–116.

    Google Scholar 

  • James, C. M. & A. M. Al-Khars, 1990. An intensive continuous culture system using tubular photobioreactors for producing microalgae. Aquaculture 87: 381–393.

    Google Scholar 

  • Kaplan, D., Z. Cohen & A. Abeliovich, 1986. Optimal growth conditions for Isochrysis galbana. Biomass 9: 37–48.

    Google Scholar 

  • Korstad, J., A. Neyts, T. Danielsen, I. Overrein & Y. Olsen, 1995. Use of swimming speed and egg ratio as predictors of the status of rotifer cultures in aquaculture. Hydrobiologia 313/314: 395–398.

    Google Scholar 

  • Lambardi, A. T. & P. J. Wangersky, 1995. Particulate lipid class composition of three marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta grown in batch culture. Hydrobiologia 306: 1–6.

    Google Scholar 

  • Montaini, E. G., C. Zittelli, M. R. Tredici, E. M. Grima, J. M. F. Selvilla & J. A. S. Perez, 1995. Long-term preservation of Tetraselmis suecica: influence of storage on viability and fatty acid profile. Aquaculture 134: 81–90.

    Google Scholar 

  • Perez, J. A. S., 1994. n-3 Polyunsaturated fatty acid productivity of the marine microalga Isochrysis galbana. Growth conditions and phenotypic selection. J. Appl. Phycol. 6: 475–478.

    Google Scholar 

  • Qiang, H. & A. Richmond, 1994. Optimizing the population density in Isochrysis galbana grown outdoors in a glass column photobioreactor. J. Appl. Phycol. 6: 391–396.

    Google Scholar 

  • Renaud, S. M., D. L. Parry, T. Luong-Van, C. Kuo, A. Padovan & N. Sammy, 1991. Effect of light intensity on proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. J. Appl. Phycol. 3: 43–53.

    Google Scholar 

  • Renaud, S. M. & D. L. Parry, 1994. Microalgae for use in tropical aquaculture. II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J. Appl. Phycol. 6: 347–356.

    Google Scholar 

  • Renaud, S. M., H. C. Zhou, D. L. Parry, L.V. Thinh & K. C. Woo, 1995. Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea and commercial species Isochrysis sp. (clone T.ISO). J. Appl. Phycol. 7: 595–602.

    Google Scholar 

  • Richmond, A., 1986. Microalgae of economic potential. In A. Richmond (eds.), Handbook of Microalgal Mass Cultures. CRC Press Inc., Florida: 199–243.

    Google Scholar 

  • Rodriguez, C., J. A. Perez, M. S. Izquierdo, J. R. Cejas, A. Bolanos & A. Lorenzo, 1996. Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period. Aquaculture 147: 93–105.

    Google Scholar 

  • Saoudi-Helis, L., J.-P. Dubacq, Y. Marty, J.–F. Samain & C. Gudin, 1994. Influence of growth rate on pigment and lipid composition of the microalga Isochrysis aff. Galbana clone T. iso. J. Appl. Phycol. 6: 315–322.

    Google Scholar 

  • Scott, A. P. & C. Middleton, 1979. Unicellular algae as a food for Turbot (Scophthalmus maximus L.) larvae: the importance of dietary long-chain polyunsaturated fatty acids. Aquaculture 18: 227–240.

    Google Scholar 

  • Segner, H., B. Orejana-Acosta & J. V. Juario, 1984. The effect of Brachionus plicatilis grown on three different species of phytoplankton on the ultrastructure of the hepatocytes of Chanos chanos (Forskal) fry. Aquaculture 42: 109–115.

    Google Scholar 

  • Sukenik, A., O. Zmora & Y. Carmeli, 1993. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117: 313–326.

    Google Scholar 

  • Watanabe, T., C. Kitajima, T. Arakawa, K. Fukusho & S. Fujita, 1978. Proximate and mineral compositions of living feeds used in seed production of fish. Bull. Jpn Soc. Sci. Fish. 44: 979–984.

    Google Scholar 

  • Watanabe, T., C. Kitajima & S. Fujita, 1983. Nutritional values of live organisms used in Japan for the mass propagation of fish: a review. Aquaculture 34: 115–143.

    Google Scholar 

  • Yamasaki, S. & H. Hirata, 1995. CO2 concentration change in Nannochloropsis sp. culture medium. Aqua. Eng. 14(4): 357–365.

    Google Scholar 

  • Yufera, M., L. M. Lubian & E. Pascula, 1983. Effecto de cuatro algas marinas sobre el crecimiento poblacional de dos cepas de Brachionus plicatilis (Rotifer: Brachionidae) en cultivo. Investigacion Pesquera (Barcelona) 48: 549–556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tawfiq S. Abu-Rezq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Rezq, T.S., Al-Musallam, L., Al-Shimmari, J. et al. Optimum production conditions for different high-quality marine algae. Hydrobiologia 403, 97–107 (1999). https://doi.org/10.1023/A:1003725626504

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003725626504

Navigation