Skip to main content

Advertisement

Log in

Integration specificity of the hobo element of Drosophila melanogaster is dependent on sequences flanking the integration site

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We analyzed the integration specificity of the hobo transposable element of Drosophila melanogaster. Our results indicate that hobo is similar to other transposable elements in that it can integrate into a large number of sites, but that some sites are preferred over others, with a few sites acting as integration hot spots. A comparison of DNA sequences from 112 hobo integration sites identified a consensus sequence of NTNNNNAC, but this consensus was insufficient to account for the observed integration specificity. To begin to define the parameters affecting hobo integration preferences, we analyzed sequences flanking a donor hobo element, as well as sequences flanking a hobo integration hot spot for their relative influence on hobo integration specificity. We demonstrate experimentally that sequences flanking a hobo donor element do not influence subsequent integration site preference, whereas, sequences contained within 31 base pairs flanking an integration hot spot have a significant effect on the frequency of integration into that site. However, sequence analysis of the DNA flanking several hot spots failed to identify any common sequence motif shared by these sites. This lack of primary sequence information suggests that higher order DNA structural characteristics of the DNA and/or chromatin may influence integration site selection by the hobo element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, P.W., W.D. Warren & D.A. O'Brochta, 1993. The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc. Natl. Acad. Sci. USA 90: 9693–9697.

    Article  PubMed  CAS  Google Scholar 

  • Bancroft, I., J.D.G. Jones & C. Dean, 1993. Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell 5: 631–638.

    Article  PubMed  CAS  Google Scholar 

  • Bender, J. & N. Kleckner, 1992. Tn10 integration specificity is strongly dependent upon sequences immediately adjacent to the target-site consensus sequence. Proc. Natl. Acad. Sci. USA 89: 7996–8000.

    Article  PubMed  CAS  Google Scholar 

  • Bigot, Y., C. Augé-Gouillou & G. Periquet, 1996. Computer analyses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1-mariner transposon family. Gene 174: 265–271.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, R.K., M. Macy, D. Koehler, R. Grimaila & W.M. Gelbart, 1989. Identification of a fully-functional hobo transposable element and its use for germ-line transformation of Drosophila. EMBO J. 8: 211–217.

    PubMed  CAS  Google Scholar 

  • Brukner, I., R. Sánchez, D. Suck & S. Pongor, 1995. Sequence-dependent bending propensity of DNA as revealed by DNase I: parameters for trinucleotides. EMBO J. 14: 1812–1818.

    PubMed  CAS  Google Scholar 

  • Caizzi, R., C. Caggese & S. Pimpinelli, 1993. A new transposonlike family in Drosophila melanogaster with a unique heterochromatic organization. Genetics 133: 335–345.

    PubMed  CAS  Google Scholar 

  • Calvi, B.R., T.J. Hong, D.D. Findley & W.M. Gelbart, 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator and Tam3. Cell 66: 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Calvi, B.R. & W.M. Gelbart, 1994. The basis for germline specificity of the hobo transposable element in Drosophila melanogaster. EMBO J. 13: 1636–1644.

    PubMed  CAS  Google Scholar 

  • Chalker, D.L. & S.B. Sandemeyer, 1992. Ty3 integrates within the region of RNA polymerase II transcription initiation. Genes Dev. 6: 117–128.

    PubMed  CAS  Google Scholar 

  • Chen, J., I.M. Greenblatt & S.L. Dellaporta, 1992. Molecular analysis of Ac transposition and DNA replication. Genetics 130: 665–676.

    PubMed  CAS  Google Scholar 

  • Coates, C.J., K.N. Johnson, H.D. Perkins, A.J. Howells, D.A. O'Brochta & P.W. Atkinson, 1996. The hermit transposable element of the Australian sheep blowfly, Lucilia cuprina, belongs to the hAT family of transposable elements. Genetica 97: 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E.S., T.P. Robbins, J. Almeida, A. Hudson & R. Carpenter, 1989. Consequences and mechanisms of transposition in Antirhinnum majus, pp. 523–529 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Colot, V., V. Haedens & J.-L. Rossignol, 1998. Extensive, nonrandom diversity of excision footprints generated by Ds-like transposon Ascot-1 suggests new parallels with V(D)J recombination. Mol. Cell Biol. 18: 4337–4346.

    PubMed  CAS  Google Scholar 

  • Craig, N.L. 1996. Transposon Tn7. Curr. Top. Microbiol. Immunol. 204: 27–48.

    PubMed  CAS  Google Scholar 

  • Craig, N.L., 1997. Target site selection in transposition. Annu. Rev. Biochem. 66: 437–474.

    Article  PubMed  CAS  Google Scholar 

  • Craigie, R., 1992. Hotspots and warm spots: integration specificity of retroelements. Trends Genet. 8: 187–190.

    Article  PubMed  CAS  Google Scholar 

  • DeVault, J.D. & S.K. Narang, 1994. Transposable elements in lepidoptera: hobo-like transposons in Heliothis virescens and Helicoverpa zea. Biochem. Biophys. Res. Commun. 203: 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Devine, S.E. & J.D. Boeke, 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 10: 620–633.

    PubMed  CAS  Google Scholar 

  • Devore, J. & R. Peck, 1993. pp. 464–465 in Statistics: The exploration and analysis of data. Wadsworth Publishing Co., Belmont CA.

    Google Scholar 

  • Dooner, H.K., J. English & E.J. Ralston, 1988. The frequency of transposition of the maize element Activator is not affected by an adjacent deletion. Mol. Gen. Genet. 211: 485–491.

    Article  PubMed  CAS  Google Scholar 

  • English, J., K. Harrison & J.D.G. Jones, 1993. A genetic analysis of DNA sequence requirements for Dissociation state 1 activity in tobacco. Plant Cell 5: 501–514.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W.R., 1996. P elements in Drosophila, pp. 103–123 in Transposable Elements, edited by H. Saedler and A. Gierl. Springer-Verlag, Berlin.

    Google Scholar 

  • Finnegan, D.J., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff, N.V., 1989. Maize transposable elements, pp. 375–411 in Mobile DNA, edited by D.E. Berg & M.M. Howe. American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Gay, P., D.L. Coq, M. Steinmetz, T. Berkelma & C.I. Kado, 1985. Positive selection procedure for entrapment of integration sequence elements in Gram-negative bacteria. J. Bacteriol. 164: 918–921.

    PubMed  CAS  Google Scholar 

  • Grappin, P., C. Audeon, M.-C. Chupeau & M.-A. Grandastien, 1996. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol. Gen. Genet. 252: 386–397.

    PubMed  CAS  Google Scholar 

  • Hallet, B., R. Rezsöhazy, J. Mahillon & J. Delcour, 1994. IS231A integration specificity: consensus sequence and DNA bending at the target site. Mol. Microbiol. 14: 131–139.

    PubMed  CAS  Google Scholar 

  • Halling, S. & N. Kleckner, 1982. A symmetrical six-base-pair target site sequence determines Tn10 integration specificity. Cell 28: 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Handler A.M. & S.P. Gomez, 1996. The hobo transposable element excises and has related elements in tephritid species. Genetics 143: 1339–1347.

    PubMed  CAS  Google Scholar 

  • Hehl, R. & B. Baker, 1990. Properties of maize transposable element Activator in transgenic tobacco plants: a versatile interspecies genetic tool. Plant Cell 2: 709–721.

    Article  PubMed  CAS  Google Scholar 

  • Hehl, R., 1994. Transposon tagging in heterologous host plants. Trends Genet. 10: 385–386.

    Article  PubMed  CAS  Google Scholar 

  • Hirt, B., 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26: 365–369.

    Article  PubMed  CAS  Google Scholar 

  • Ji, H., D.P. Moore, M.A. Blomberg, L.T. Braiterman, D.F. Voytas, G. Natsoulis & J.D. Boeke, 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018.

    Article  PubMed  CAS  Google Scholar 

  • Kempken, R. & U. Klueck, 1996. Restless, an active Ac-like transposon from the fungus Tolyocladium inflatum: structure, expression, and alternative RNA splicing. Mol. Cell. Biol. 16: 6563–6572.

    PubMed  CAS  Google Scholar 

  • Ketting, R.F., S.E. J. Fischer & R.H. Plasterk, 1997. Target choice determinants of the Tc1 transposon of Caenorhabditis elegans. Nucleic Acids Res. 25: 4041–4047.

    Article  PubMed  CAS  Google Scholar 

  • Koga, A., M. Suzuki, H. Inagaki, Y. Bessho & H. Hori, 1996. Transposable element in fish. Nature 383: 30.

    Article  PubMed  CAS  Google Scholar 

  • Lampe, D.J., T.E. Grant & H.M. Robertson, 1998. Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149: 179–187.

    PubMed  CAS  Google Scholar 

  • Ladevèze, V., M.I. Galindo, L. Pasqual, G. Periquet & F. Lemeunier, 1994. Invasion of the hobo transposable element studied by in situ hybridization on polytene chromosomes of Drosophila melanogaster. Genetica 93: 91–100.

    Article  PubMed  Google Scholar 

  • Long, D., M.E. Sundeberg, J. Swinburne, P. Paungomlee & G. Coupland, 1993. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds integration. Proc. Natl. Acad. Sci. USA 90: 10370–10374.

    Article  PubMed  CAS  Google Scholar 

  • Lozovskaya, E.R., D.J. Nurminsky, D.L. Hartl & D.T. Sullivan, 1996. Germline transformation of Drosophila virilis mediated by the transposable element hobo. Genetics 142: 173–177.

    PubMed  CAS  Google Scholar 

  • Marion-Poll, A., E. Marin, N. Bonnefoy & V. Pautot, 1993. Transposition of maize autonomous element Activator in transgenic Nicotiana plumbaginifolia plants. Mol. Gen. Genet. 238: 209–217.

    PubMed  CAS  Google Scholar 

  • Mizuuchi, K., 1992. Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61: 1011–1051.

    Article  PubMed  CAS  Google Scholar 

  • Mizuuchi, M. & K. Mizuuchi, 1993. Target site selection in transposition of phage Mu. Cold Spring Harb. Symp. Quant. Biol. 58: 515–523.

    PubMed  CAS  Google Scholar 

  • Muller, H.P. & H.E. Varmus, 1994. DNA bending creates favored sites for retroviral integration: an explanation for preferred integration sites in nucleosomes. EMBO J. 13: 4704–4714.

    PubMed  CAS  Google Scholar 

  • Norrander, J.M., T. Kempe & J. Messing, 1983. Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • O'Brochta, D.A. & P.W. Atkinson, 1996. Transposable elements and gene transformation in non-drosophilid insects. Insect Bioch. Molec. Biol. 26: 739–753.

    Article  Google Scholar 

  • O'Brochta, D.A., W.D. Warren, K.J. Saville & P.W. Atkinson, 1996. Hermes, a functional non-drosophilid insect gene vector from Musca domestica. Genetics. 142: 907–914.

    PubMed  Google Scholar 

  • O'Brochta, D.A., W.D. Warren, K.J. Saville & P.W. Atkinson, 1994. Interplasmid transposition of Drosophila hobo elements in non-drosophilid insects. Mol.Gen.Genet. 244: 9–14.

    Article  PubMed  Google Scholar 

  • Osborne, B.I., C.A. Corr, J.P. Prince, R. Hehl, S.D. Tanksley, S. McCormick & B. Baker, 1991. Ac transposition from a T-DNA can generate linked and unlinked clusters of integrations in the tomato genome. Genetics 129: 833–844.

    PubMed  CAS  Google Scholar 

  • Peterson, T., 1990. Intransgenic transposition of Ac generates a new allele of the maize P gene. Genetics 126: 469–476.

    PubMed  CAS  Google Scholar 

  • Pinkerton, A.C., D.A. O'Brochta & P.W. Atkinson, 1996. Mobility of hAT transposable elements in the Old World American bollworm, Helicoverpa armigera. Insect Mol. Biol. 5: 223–227.

    PubMed  CAS  Google Scholar 

  • Pruss, D., F.D. Bushman & A.P. Wolffe, 1994. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl. Acad. Sci. USA 91: 5913–5917.

    Article  PubMed  CAS  Google Scholar 

  • Pryciak, P.M., A. Sil & H.E. Varmus, 1992. Retroviral integration into minichromosomes in vitro. EMBO J. 11: 291–303.

    PubMed  CAS  Google Scholar 

  • Pryciak, P.M. & H.E. Varmus, 1992. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69: 769–780.

    Article  PubMed  CAS  Google Scholar 

  • Rommens, C.M., G.N. Rudenko, P.P. Dijkwel, M.J. van Haaren, P.B. Ouwerkerk, K.M. Blok, H.J. Nijkamp & J. Hille, 1992. Characterization of Ac/Ds behaviour in transgenic tomato plants using plasmid rescue. Plant Mol. Biol. 20: 61–70

    Article  PubMed  CAS  Google Scholar 

  • Rudenko, G.N., H.J. Nijkamp & J. Hille, 1992. Ds readout transcription in transgenic tomato plants. Mol. Gen. Genet. 243: 426–433.

    Google Scholar 

  • Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Sanger, F., S. Nicklen & A.R. Coulson, 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, A., C.J. Coates, S. Whyhard, U. Willhoeft, P.W. Atkinson & D.A. O'Brochta, 1997. The Hermes element from Musca domestica can transpose in four families of cyclorrhaphan flies. Genetica 99: 15–29.

    PubMed  CAS  Google Scholar 

  • Schmidt-Rogge, T., B. Weber, T. Boerner, E. Brandenburg, O. Scheider, & M. Meixner, 1994. Transposition and behavior of the maize transposable element Ac in transgenic haploid Datura innoxia Mill. Plant Science 99: 63–74.

    Article  CAS  Google Scholar 

  • Schneider, T.D. & R.M. Stephens, 1990. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18: 6097–6100.

    PubMed  CAS  Google Scholar 

  • Sherrat, D., 1989. Tn3 and related transposable elements: site-specific recombination and transposition, pp. 163–184 in Mobile DNA, edited by D.E. Berg and M.M. Howe. American Society of Microbiology, Washington, DC.

    Google Scholar 

  • Smith, A.F.A. & A.D. Riggs, 1996. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93: 1443–1448.

    Article  Google Scholar 

  • Smith D., J. Wohlgemuth, B.R. Calvi, I. Franklin & W.M. Gelbart, 1993. hobo enhancer trapping mutagenesis in Drosophila reveals an integration specificity different from P elements. Genetics 135: 1063–1076.

    PubMed  CAS  Google Scholar 

  • Spradling, A.C. & G.M. Rubin, 1982. Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218: 3410–347.

    Google Scholar 

  • Streck, R.D., J.E. MacGaffey & S.K. Beckendorf, 1986. The structure of hobo transposable elements and their integration sites. EMBO J. 5: 3615–3623.

    PubMed  CAS  Google Scholar 

  • Sugimoto, K., Y. Otusuki, S. Saji, & H. Hirochika, 1994. Transposition of the maize Ds element from a viral vector to the rice genome. Plant J. 5: 863–871.

    Article  PubMed  CAS  Google Scholar 

  • Tsay, Y-F., M.J. Frank, T. Page, C. Dean & N.M. Crawford, 1993. Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science 260: 342–344.

    PubMed  CAS  Google Scholar 

  • van Luenen, H.G. A.M. & R.H.A. Plasterk, 1994. Target site choice of the related transposable elements Tc1 and Tc3 of Caenorbhabditis elegans. Nucleic Acids Res. 22: 262–269.

    PubMed  CAS  Google Scholar 

  • Wardlaw, A.C., 1985. pp. 124–126 in Practical statistics for experimental biologists. Wiley, New York.

    Google Scholar 

  • Warren, W.D., P.W. Atkinson & D.A. O'Brochta, 1994. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family. Genet. Res. Camb. 64: 87–97.

    CAS  Google Scholar 

  • Warren, W.D., P.W. Atkinson & D.A. O'Brochta, 1995. The Australian bushfly Musca vetustissima contains a sequence related to transposons of the hobo, Ac, and Tam3 family. Gene 154: 133–134.

    Article  PubMed  CAS  Google Scholar 

  • Weil, C.F. & S.R. Wessler, 1993. Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell 5: 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y. & T.H. Eickbush, 1988. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol. Cell. Biol. 8(1): 114–123.

    PubMed  CAS  Google Scholar 

  • Zou, S., N. Ke, J.M. Kim & D.F. Voytas, 1996. The Saccharomyces retroposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10: 634–645.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saville, K.J., Warren, W.D., Atkinson, P.W. et al. Integration specificity of the hobo element of Drosophila melanogaster is dependent on sequences flanking the integration site. Genetica 105, 133–147 (1999). https://doi.org/10.1023/A:1003712619487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003712619487

Navigation