Skip to main content
Log in

Abstract

This article begins with a review of the framework of fuzzy probability theory.The basic structure is given by the σ-effect algebra of effects (fuzzy events) E(Ω,A) and the set of probability measures M + 1 (Ω, A) on a measurable space (Ω,A). An observable X: BE(Ω, A) is defined, where (Λ, B) is the value spaceof X. It is noted that there exists a one-to-one correspondence between states onE(Ω, A) and elements of M + (Ω, A) and between observables X: BE(Ω,A) and σ-morphisms from E(Λ, B) to E(Ω, A). Various combinations ofobservables are discussed. These include compositions, products, direct products,and mixtures. Fuzzy stochastic processes are introduced and an application toquantum dynamics is considered. Quantum effects are characterized from amonga more general class of effects. An alternative definition of a statistical map T:M + 1 (Ω, A) → M + 1 (Λ, B) is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. G. Beltrametti and S. Bugajski, Quantum observables in classical frameworks, Int. J Theor. Phys. 34, 1221-1229 (1995).

    Google Scholar 

  2. E. G. Beltrametti and S. Bugajski, A Classical extension of quantum mechanics, J. Phys.A Math. Gen. 28, 3329-3334 (1995).

    Google Scholar 

  3. E. G. Beltrametti and S. Bugajski, The Bell phenomenon in classical frameworks, J. Phys.A Math. Gen. 29, 247-261 (1996).

    Google Scholar 

  4. E. G. Beltrametti and S. Bugajski, Effect algebras and statistical physical theories, J. Math.Phys. 38, 3020-3030 (1997).

    Google Scholar 

  5. S. Bugajski, Classical and quantal in one or how to describe mesoscopic systems, MolPhys. Rep. 11, 161-171 (1995).

    Google Scholar 

  6. S. Bugajski, Fundamentals of fuzzy probability theory, Int. J. Theor. Phys. 35, 2229-2244 (1996).

    Google Scholar 

  7. S. Bugajski, K.-E. Hellwig, and W. Stulpe, On fuzzy random variables and statistical maps, Rep. Math. Phys. 41, 1-11 (1998).

    Google Scholar 

  8. P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Physics, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  9. E. B. Davies, Quantum Theory of Open Systems, Academic Press, New York, 1976.

    Google Scholar 

  10. D. Foulis and M. K. Bennett, Effect algebras and unsharp quantum logics, Found. Phys. 24, 1331-1352 (1994).

    Google Scholar 

  11. R. Greechie and D. Foulis, Transition to effect algebras, Int. J. Theor. Phys. 34, 1369-1382 (1995).

    Google Scholar 

  12. S. Gudder, Fuzzy probability theory, Demon. Math. 31, 235-254 (1998).

    Google Scholar 

  13. S. Gudder, What is fuzzy probability theory? to appear.

  14. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982.

    Google Scholar 

  15. G. Ludwig, Foundations of Quantum Mechanics, Vols. I and II, Springer-Verlag, Berlin, 1983/1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudder, S. Combinations of Observables. International Journal of Theoretical Physics 39, 695–704 (2000). https://doi.org/10.1023/A:1003698023288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003698023288

Keywords

Navigation