Skip to main content
Log in

Relativistic Quantum Field Inertia and Vacuum Field Noise Spectra

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The equivalence statements for quantum scalar field vacuum states that havebeen used for the thermal-like Hawking effect and Unruh effect are surveyed.An important ingredient in this framework is the concept of a vacuum field noisespectrum, by which one can obtain information about the curvature invariants ofclassical worldlines (relativistic classical trajectories). It is argued, in the spiritof the free-fall-type universality, that the preferred quantum field vacua withrespect to accelerated worldlines should be chosen from the class of all thosepossessing stationary spectra for their quantum fluctuations. For scalar quantumfield vacua there are six stationary cases, as shown by Letaw some time ago,and reviewed here. However, nonstationary vacuum noises can be treated by afew mathematical methods that are mentioned as well. Since the informationabout the kinematical curvature invariants of the worldlines is of radiometricorigin, suggestions are given on the more useful application of such an academicformalism to radiation and beam radiometric standards for high-energyaccelerators and in astrophysics. We conclude with a look at related axiomaticquantum field topics and some other recent work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Galilei,Dialogues Concerning Two New Sciences, Elzevirs, Leyden (1638) [English translation by H. Crew and A. de Salvio, Macmillan, New York (1933)].

  2. C. W. Groetsch,Am. Math. Month. 105, 544 (1998).

    Google Scholar 

  3. J. W. T. Dabbs, J. A. Harvey, D. Paya, and H. Horstmann,Phys. Rev. B 139, 756 (1965).

    Google Scholar 

  4. S. W. Hawking,Nature 248, 30 (1974).

    Google Scholar 

  5. R. Broutet al.,Phys. Rep. 260, 329 (1995).

    Google Scholar 

  6. W. G. Unruh,Phys. Rev. D 14, 870 (1976).

    Google Scholar 

  7. U. H. Gerlach,Phys. Rev. D 57, 4718 (1998).

    Google Scholar 

  8. P. C. W. Davies,J. Phys. A 8, 609 (1975).

    Google Scholar 

  9. B. Reznik,Phys. Rev. D 57, 2403 (1998); gr-qc/9511033.

    Google Scholar 

  10. L. Smolin,Class. Quantum Grav. 3, 347 (1986).

    Google Scholar 

  11. M.-T. Jaekel and S. Reynaud, inElectron Theory and Quantum Electrodynamics: 100 Years Later, J. P. Dowling, ed., Plenum Press, New York (1997), p. 55.

    Google Scholar 

  12. B. Haisch, A. Rueda, and H. E. Puthoff,Phys. Rev. A 49, 678 (1994); physics/9807023.

    Google Scholar 

  13. U. H. Gerlach, InProceedings 4th Marcel Grossman Meeting on General Relativity, R. Ruffini, ed., Elsevier (1986), pp. 1129-1138;Ann. Inst. Henri Poincare´ 49, 397 (1988).

  14. S. Takagi,Prog. Theor. Phys. Suppl. 88, 1 (1986).

    Google Scholar 

  15. T. Jacobson,Phys. Rev. D 44, 1731 (1991).

    Google Scholar 

  16. L. P. Grishchuk, Ya. B. Zel'dovich, and L. V. Rozhanskii,Zh. Eksp. Teor. Fiz. 92, 20 (1987) [Sov. Phys. JETP 65, 11 (1987)].

    Google Scholar 

  17. T. H. Boyer,Phys. Rev. D 29, 1096 (1984);Sci. Am. 253, 56 (August 1985).

    Google Scholar 

  18. V. L. Ginzburg and V. P. Frolov,Usp. Fis. Nauk 153, 649 (1987) [Sov. Phys. Usp. 30, 1073 (1987)].

    Google Scholar 

  19. A. A. Logunov, M. A. Mestvirishvili, and Yu. V. Chugreev,Theor. Math. Phys. 99, 470 (1994);Phys.-Uspekhi 39, 73 (1996).

    Google Scholar 

  20. V. L. Ginzburg and Yu. N. Eroshenko,Phys.-Uspekhi 33, 195 (1995);39, 81 (1996).

    Google Scholar 

  21. P. Candelas and D. W. Sciama,Phys. Rev. D 27, 1715 (1983).

    Google Scholar 

  22. V. P. Frolov and D. M. Gitman,J. Phys. A 11, 1329 (1978).

    Google Scholar 

  23. J. F. Donoghue, B. R. Holstein, and R. W. Robinett,Gen. Rel. Grav. 17, 207 (1985).

    Google Scholar 

  24. G. 't Hooft,J. Geom. Phys. 1, 45 (1984).

    Google Scholar 

  25. H. Kolbenstvedt,Eur. J. Phys. 12, 119 (1991).

    Google Scholar 

  26. W. G. Unruh,Phys. Rev. D 46, 3271 (1992).

    Google Scholar 

  27. N. Pinto-Neto and N. F. Svaiter,Europhys. Lett. 24, 7 (1993).

    Google Scholar 

  28. A. I. Nikishov and V. I. Ritus,Zh. Eksp. Teor. Fiz. 94, 31 (1988).

    Google Scholar 

  29. B. F. Svaiter and N. F. Svaiter,Phys. Rev. D 46, 5267 (1992).

    Google Scholar 

  30. J. R. Letaw,Phys. Rev. D 23, 1709 (1981);J. Math. Phys. 23, 425 (1982).

    Google Scholar 

  31. J. R. Letaw and J. D. Pfautsch,Phys. Rev. D 22, 1345 (1980);24, 1491 (1981).

    Google Scholar 

  32. G. Barton and A. Calogeracos,Proc. R. Soc. Lond. A 452, 1167 (1996).

    Google Scholar 

  33. W. Unruh,Phys. Rev. A 59, 131 (1999).

    Google Scholar 

  34. P. Chen, ed.,Quantum Aspects of Beam Physics, World Scientific, Singapore (1999).

    Google Scholar 

  35. J. S. Bell and J. M. Leinaas,Nucl. Phys. B 212, 131 (1983).

    Google Scholar 

  36. J. S. Bell, R. J. Hughes, and J. M. Leinaas,Z. Phys. C 28, 75 (1985).

    Google Scholar 

  37. J. S. Bell and J. M. Leinaas,Nucl. Phys. B 284, 488 (1987).

    Google Scholar 

  38. J. Schwinger,Phys. Rev. 75, 1912 (1949).

    Google Scholar 

  39. S. Hacyan and A. Sarmiento,Phys. Rev. D 40, 2641 (1989).

    Google Scholar 

  40. S. R. Mane,Phys. Rev. D 43, 3578 (1991).

    Google Scholar 

  41. L. Parker and A. Raval,Phys. Rev. D 57, 7327 (1998).

    Google Scholar 

  42. C. H. Brans, Contribution to the Mexico meeting in honor of F. Hehl, gr-qc/9801029.

  43. H. Rosu,Nuovo Cim. B 109, 423 (1994);114, 107 (1999).

    Google Scholar 

  44. T. Nagatsuka and S. Takagi,Ann. Phys. 242, 292 (1995).

    Google Scholar 

  45. L. Sriramkumar and T. Padmanabhan,Class. Quant. Grav. 13, 2061 (1996).

    Google Scholar 

  46. F. Hinterleitner,Ann. Phys. 226, 165 (1993).

    Google Scholar 

  47. J. D. Cresser,J. Opt. Soc. Am. B 6, 1492 (1989).

    Google Scholar 

  48. D. N. Klyshko,Phys. Lett. A 154, 433 (1991).

    Google Scholar 

  49. V. P. Frolov and V. L. Ginzburg,Phys. Lett. A 116, 423 (1986).

    Google Scholar 

  50. K.-P. Marzlin and J. Audretsch,Phys. Rev. D 57, 1045 (1998).

    Google Scholar 

  51. C. Gabriel, P. Spindel, S. Massar, and R. Parentani,Phys. Rev. D 57, 6496 (1998).

    Google Scholar 

  52. R. Parentani and S. Massar,Phys. Rev. D 55, 3603 (1997).

    Google Scholar 

  53. S. Massar, R. Parentani, and R. Brout,Class. Quant. Grav. 10, 385 (1993).

    Google Scholar 

  54. A. Higuchi, G. E. A. Matsas, and C. B. Peres,Phys. Rev. D 48, 3731 (1993).

    Google Scholar 

  55. H. Ren and E. J. Weinberg,Phys. Rev. D 49, 6526 (1994).

    Google Scholar 

  56. G. E. A. Matsas,Gen. Rel. Grav. 26, 1165 (1994).

    Google Scholar 

  57. E. Bautista,Phys. Rev. D 48, 783 (1993).

    Google Scholar 

  58. R. D. Daniels,Phys. Lett. B 408, 52 (1997).

    Google Scholar 

  59. S. Massar and R. Parentani,Phys. Rev. D 54, 7426 (1996).

    Google Scholar 

  60. L. H. Ford,Phys. Rev. D 48, 776 (1993).

    Google Scholar 

  61. V. I. Man'ko and R. Vilela Mendes,IEEE Trans. Signal Proc., in press (1999); physics/ 9712022.

  62. A. Fedorova, M. Zeitlin, and Z. Parsa, physics/9902062, 9902063.

  63. C. E. Heil and D. F. Walnut,SIAM Rev. 31, 628 (1989).

    Google Scholar 

  64. L. F. Cugliandolo and J. Kurchan,Phys. Rev. Lett. 71, 173 (1993);J. Phys. A 27, 5749 (1994).

    Google Scholar 

  65. L. F. Cugliandolo, J. Kurchan, and L. Peliti,Phys. Rev. E 55, 3898 (1997).

    Google Scholar 

  66. B. L. Hu and A. Matacz,Phys. Rev. D 49, 6612 (1994); B. L. Hu, gr-qc/9902064;Int. J. Theor. Phys. (1999).

    Google Scholar 

  67. G. Gour and L. Sriramkumar, quant-ph/9808032.

  68. H. Hessling,Nucl. Phys. B 415, 243 (1994).

    Google Scholar 

  69. V. Moretti,Class. Quant. Grav. 13, 985 (1996); Erratum14, 825 (1997).

    Google Scholar 

  70. W. G. Unruh and N. Weiss,Phys. Rev. D 29, 1656 (1984).

    Google Scholar 

  71. R. Haag,Local Quantum Physics, Springer, Berlin (1992).

    Google Scholar 

  72. R. Haag, H. Narnhofer, and U. Stein,Commun. Math. Phys. 94, 219 (1984).

    Google Scholar 

  73. K. Fredenhagen and R. Haag,Commun. Math. Phys. 108, 91 (1987).

    Google Scholar 

  74. M. Shifman, Lecture given at the 1997 Yukawa International Seminar on Nonperturbative QCD-Structure of the QCD Vacuum, Kyoto, Dec. 2-12, 1997.

  75. G. Preparata, S. Rovelli, and S.-S. Xue, gr-qc/9806044.

  76. S. Cacciatoriet al.,Phys. Lett. B 427, 254 (1998).

    Google Scholar 

  77. A. Connes and C. Rovelli,Class. Quant. Grav. 11, 2899 (1994).

    Google Scholar 

  78. B. Schroer, hep-th/9809017, 9710234.

  79. D. Buchholtz, O. Dreyer, M. Florig, and S. J. Summers, math-ph/9805026.

  80. M. Niedermaier,Nucl. Phys. B 535, 621 (1998);519, 517 (1998).

    Google Scholar 

  81. I. Ojima,Lett. Math. Phys. 11, 73 (1986);Ann. Phys. 137, 1 (1981).

    Google Scholar 

  82. B. S. Kay,Commun. Math. Phys. 100, 57 (1985).

    Google Scholar 

  83. C. Lucchesi, hep-ph/9808435.

  84. W. Kro´likowski, hep-th/9803255.

  85. A. E. Faraggi and M. Matone, hep-th/9809127, and references therein.

  86. G. M. D'Ariano, InQuantum Communication and Measurement, eds. V. P. Belavkin, O. Hirota, and R. L. Hudson, eds., Plenum Press, New York (1997), p. 253.

    Google Scholar 

  87. A. M. Fedotovet al.,Phys. Lett. A 254, 126 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosu, H.C. Relativistic Quantum Field Inertia and Vacuum Field Noise Spectra. International Journal of Theoretical Physics 39, 285–295 (2000). https://doi.org/10.1023/A:1003680124679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003680124679

Keywords

Navigation