Skip to main content

Why Johnny Can't Prove

Abstract

The one sentence answer to the question in the title is that the ability to prove depends on forms of knowledge to which most students are rarely if ever exposed. The paper gives a more detailed analysis, drawing on research in mathematics education and classroom experiences.

This is a preview of subscription content, access via your institution.

References

  • Alibert, D. and Thomas, M.: 1991, 'Research on mathematical proof', in D. Tall (ed.), Advanced Mathematical Thinking, Kluwer, Dordrecht, The Netherlands, pp. 215–230.

    Google Scholar 

  • Anton, H.: 1994, Elementary Linear Algebra, Wiley, New York, USA.

    Google Scholar 

  • Arnold, V. I.: 1991, 'A Mathematical Trivium', Russian Mathematical Surveys 46(1), 271–278.

    Google Scholar 

  • Balacheff, N.: 1987, 'Processus de preuve et situations de validation', Educational Studies in Mathematics 18(2), 147–176.

    Article  Google Scholar 

  • Barwise, J. and Etchemendy, J.: 1995, Hyperproof, CSLI Lecture Notes, No. 42, Stanford University, Stanford, CA, USA.

    Google Scholar 

  • Bronner, A.: 1997, 'Les rapports d'enseignants de troisième et de seconde aux objets 'nombre réel' et 'racine carrée', Recherches en didactique des mathématiques 17(3), 55–80.

    Google Scholar 

  • Cauchy, A.-L.: 1821, Cours d'analyse de l'école royale polytechnique, de Bure, Paris, France.

    Google Scholar 

  • Coe, R. and Ruthven, K.: 1994, 'Proof practices and constructs of advanced mathematics students', British Educational Research Journal 20(1), 41–53.

    Google Scholar 

  • Davis, P. J. and Hersh, R.: 1981, The Mathematical Experience, Birkhäuser, Boston.

    Google Scholar 

  • Dreyfus, T.: 1994, 'Imagery and reasoning in mathematics and mathematics education', in D. Robitaille, D. Wheeler and C. Kieran (eds.), Selected Lectures from the 7th International Congress on Mathematical Education, Les presses de l'université Laval, Sainte-Foy, Québec, Canada, pp. 107–122.

    Google Scholar 

  • Dreyfus, T.: in press, 'La demostracion a lo largo del curriculum' ('Experiencing proof throughout the curriculum'), in J. Deulofeu and N. Gorgorio (eds.), Educación matemática: retos y cambios desde una perspectiva internacional, ICE/GRAO pub., Barcelona, Spain.

  • Dreyfus, T. and Eisenberg, T.: 1996, 'On different facets of mathematical thinking', in R. J. Sternberg and T. Ben-Zeev (eds.), The Nature of Mathematical Thinking, Lawrence Erlbaum, Mahwah, NJ, USA.

    Google Scholar 

  • Dreyfus, T. and Hadas, N.: 1996, 'Proof as answer to the question why', Zentralblatt für Didaktik der Mathematik 28(1), 1–5.

    Google Scholar 

  • Duval, R.: 1992–1993, 'Argumenter, démontrer, expliquer: continuité ou rupture cognitive?', petit x 31, 37–61.

    Google Scholar 

  • Ernest, P.: 1999, 'Forms of knowledge in mathematics and mathematics education: Philosophical and rhetorical perspectives', Educational Studies in Mathematics 38, 67–83.

    Article  Google Scholar 

  • Fallis, D.: 1996, 'Mathematical Proof and the Reliability of DNA Evidence', American Mathematical Monthly 103(6), 491–497.

    Google Scholar 

  • Ferrari, P. L.: 1997, 'Action-based strategies in advanced algebraic problem solving', in E. Pehkonen (ed.), Proceedings of the Twenty-First International Conference on the Psychology of Mathematics Education, University of Helsinki, Finland, Vol. 2, pp. 257–264.

    Google Scholar 

  • Finlow-Bates, K., Lerman, S. and Morgan, C.: 1993, 'A survey of current concepts of proof help by first year mathematics students', in I. Hirabayashi, N. Nohda, K. Shigematsu and F.-L. Lin (eds.), Proceedings of the Seventeenth International Conference on the Psychology of Mathematics Education, University of Tsukuba, Japan, Vol. I, pp. 252–259.

    Google Scholar 

  • Fischbein, E.: 1982, 'Intuition and proof', For the Learning of Mathematics 3(2), 9–24.

    Google Scholar 

  • Fraleigh, J. B.: 1990, Calculus with Analytic Geometry, Addison-Wesley, Menlo Park, CA, USA.

    Google Scholar 

  • Hanna, G.: 1995, 'Challenges to the importance of proof', For the Learning of Mathematics 15(3), 42–49.

    Google Scholar 

  • Harel, G. and Sowder, L.: 1998, 'Students' proof schemes: Results from Exploratory Studies', in E. Dubinsky, A. H. Schoenfeld and J. J. Kaput (eds.), Research on Collegiate Mathematics Education, Vol. III, American Mathematical Society, Providence, RI, USA, pp. 234–283.

    Google Scholar 

  • Hillel, J. and Alvarez, J. C.: 1996, 'University mathematics, report of topic group 3′, in C. Alsina, J. Alvarez, M. Niss, A. Perez, L. Rico and A. Sfard (eds.), Proceedings of the 8th International Congress on Mathematical Education, S.A.E.M. 'Thales', Sevilla, pp. 245–248.

    Google Scholar 

  • Kitcher, P.: 1984, The Nature of Mathematical Knowledge, Oxford University Press, New York, USA.

    Google Scholar 

  • Kleiner, I.: 1991, 'Rigor and proof in mathematics: a historical perspective', Mathematics Magazine 64(5), 291–314.

    Google Scholar 

  • Kline, M.: 1973, Why Johnny Can't Add, Random House, New York, USA.

    Google Scholar 

  • Lakatos, I.: 1978, 'Cauchy and the continuum', The Mathematical Intelligencer 1(3), 151–161.

    Google Scholar 

  • Lampert, M.: 1990, 'When the problem is not the question and the solution is not the answer: mathematical knowing and teaching', American Educational Research Journal 27(1), 29–63.

    Google Scholar 

  • Lay, D. C.: 1994, Linear Algebra and Its Applications, Addison-Wesley, Reading, MA, USA.

    Google Scholar 

  • Lebesgue, H.: 1963, En marge du calcul des variations', L'enseignement mathématique 9(4), 212–326.

    Google Scholar 

  • Maher, C. A. and Martino, A. M.: 1996, 'The development of the idea of mathematical proof: a 5-year case study', Journal for Research in Mathematics Education 27(2), 194–214.

    Google Scholar 

  • Margolinas, C.: 1992, 'Eléments pour l'analyse du rôle du maître: les phases de conclusion', Recherches en Didactique des Mathématiques 12(1), 113–158.

    Google Scholar 

  • Martin, G. and Harel, G.: 1989, 'Proof frames of preservice elementary teachers', Journal for Research in Mathematics Education 20(1), 41–51.

    Google Scholar 

  • Mason, J. and Spence, M.: 1999, 'Beyond mere knowledge of mathematics: The importance of Knowing-to Act in the moment', Education Studies in Mathematics 38, 135–161.

    Article  Google Scholar 

  • Moore, R. C.: 1994, 'Making the transition to formal proof', Educational Studies in Mathematics 27(3), 249–266.

    Article  Google Scholar 

  • Movshowitz-Hadar, N.: 1988, 'Stimulating presentation of theorems followed by responsive proofs', For the Learning of Mathematics 8(2), 12–19.

    Google Scholar 

  • Richman, F.: 1993, 'A Circular Argument', The College Mathematics Journal 24(2), 160–162.

    Google Scholar 

  • Sierpinska, A.: 1994, Understanding in Mathematics, Falmer Press, London, UK.

    Google Scholar 

  • Silver, E. A.: 1994, 'Mathematical thinking and reasoning for all students: moving from rhetoric to reality', in D. Robitaille, D. Wheeler and C. Kieran (eds.), Selected Lectures from the 7th International Congress on Mathematical Education, Les presses de l'université Laval, Sainte-Foy, Québec, Canada, pp. 311–326.

    Google Scholar 

  • Velleman, D. J.: 1997, 'Fermat's last theorem and Hilbert's program', The Mathematical Intelligencer 19(1), 64–67.

    Google Scholar 

  • Vinner, S.: 1997, 'The pseudo-conceptual and the pseudo-analytical thought processes in mathematics learning', Educational Studies in Mathematics 34(2), 97–129.

    Article  Google Scholar 

  • Yackel, E. and Cobb, P.: 1996, 'Sociomathematical norms, argumentation, and autonomy in mathematics', Journal for Research in Mathematics Education 27(4), 458–477.

    Google Scholar 

  • Young, L. C.: 1969, Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, USA.

    Google Scholar 

  • Zack, V.: 1997, '“You have to prove us wrong”: Proof at the elementary school level', in E. Pehkonen (ed.), Proceedings of the Twenty-First International Conference on the Psychology of Mathematics Education, University of Helsinki, Finland, Vol. 4, pp. 291–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dreyfus, T. Why Johnny Can't Prove. Educational Studies in Mathematics 38, 85–109 (1999). https://doi.org/10.1023/A:1003660018579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003660018579

Keywords

  • Detailed Analysis
  • Mathematics Education
  • Classroom Experience
  • Sentence Answer