Educational Studies in Mathematics

, Volume 38, Issue 1–3, pp 85–109 | Cite as

Why Johnny Can't Prove

  • Tommy Dreyfus


The one sentence answer to the question in the title is that the ability to prove depends on forms of knowledge to which most students are rarely if ever exposed. The paper gives a more detailed analysis, drawing on research in mathematics education and classroom experiences.


Detailed Analysis Mathematics Education Classroom Experience Sentence Answer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alibert, D. and Thomas, M.: 1991, 'Research on mathematical proof', in D. Tall (ed.), Advanced Mathematical Thinking, Kluwer, Dordrecht, The Netherlands, pp. 215–230.Google Scholar
  2. Anton, H.: 1994, Elementary Linear Algebra, Wiley, New York, USA.Google Scholar
  3. Arnold, V. I.: 1991, 'A Mathematical Trivium', Russian Mathematical Surveys 46(1), 271–278.Google Scholar
  4. Balacheff, N.: 1987, 'Processus de preuve et situations de validation', Educational Studies in Mathematics 18(2), 147–176.CrossRefGoogle Scholar
  5. Barwise, J. and Etchemendy, J.: 1995, Hyperproof, CSLI Lecture Notes, No. 42, Stanford University, Stanford, CA, USA.Google Scholar
  6. Bronner, A.: 1997, 'Les rapports d'enseignants de troisième et de seconde aux objets 'nombre réel' et 'racine carrée', Recherches en didactique des mathématiques 17(3), 55–80.Google Scholar
  7. Cauchy, A.-L.: 1821, Cours d'analyse de l'école royale polytechnique, de Bure, Paris, France.Google Scholar
  8. Coe, R. and Ruthven, K.: 1994, 'Proof practices and constructs of advanced mathematics students', British Educational Research Journal 20(1), 41–53.Google Scholar
  9. Davis, P. J. and Hersh, R.: 1981, The Mathematical Experience, Birkhäuser, Boston.Google Scholar
  10. Dreyfus, T.: 1994, 'Imagery and reasoning in mathematics and mathematics education', in D. Robitaille, D. Wheeler and C. Kieran (eds.), Selected Lectures from the 7th International Congress on Mathematical Education, Les presses de l'université Laval, Sainte-Foy, Québec, Canada, pp. 107–122.Google Scholar
  11. Dreyfus, T.: in press, 'La demostracion a lo largo del curriculum' ('Experiencing proof throughout the curriculum'), in J. Deulofeu and N. Gorgorio (eds.), Educación matemática: retos y cambios desde una perspectiva internacional, ICE/GRAO pub., Barcelona, Spain.Google Scholar
  12. Dreyfus, T. and Eisenberg, T.: 1996, 'On different facets of mathematical thinking', in R. J. Sternberg and T. Ben-Zeev (eds.), The Nature of Mathematical Thinking, Lawrence Erlbaum, Mahwah, NJ, USA.Google Scholar
  13. Dreyfus, T. and Hadas, N.: 1996, 'Proof as answer to the question why', Zentralblatt für Didaktik der Mathematik 28(1), 1–5.Google Scholar
  14. Duval, R.: 1992–1993, 'Argumenter, démontrer, expliquer: continuité ou rupture cognitive?', petit x 31, 37–61.Google Scholar
  15. Ernest, P.: 1999, 'Forms of knowledge in mathematics and mathematics education: Philosophical and rhetorical perspectives', Educational Studies in Mathematics 38, 67–83.CrossRefGoogle Scholar
  16. Fallis, D.: 1996, 'Mathematical Proof and the Reliability of DNA Evidence', American Mathematical Monthly 103(6), 491–497.Google Scholar
  17. Ferrari, P. L.: 1997, 'Action-based strategies in advanced algebraic problem solving', in E. Pehkonen (ed.), Proceedings of the Twenty-First International Conference on the Psychology of Mathematics Education, University of Helsinki, Finland, Vol. 2, pp. 257–264.Google Scholar
  18. Finlow-Bates, K., Lerman, S. and Morgan, C.: 1993, 'A survey of current concepts of proof help by first year mathematics students', in I. Hirabayashi, N. Nohda, K. Shigematsu and F.-L. Lin (eds.), Proceedings of the Seventeenth International Conference on the Psychology of Mathematics Education, University of Tsukuba, Japan, Vol. I, pp. 252–259.Google Scholar
  19. Fischbein, E.: 1982, 'Intuition and proof', For the Learning of Mathematics 3(2), 9–24.Google Scholar
  20. Fraleigh, J. B.: 1990, Calculus with Analytic Geometry, Addison-Wesley, Menlo Park, CA, USA.Google Scholar
  21. Hanna, G.: 1995, 'Challenges to the importance of proof', For the Learning of Mathematics 15(3), 42–49.Google Scholar
  22. Harel, G. and Sowder, L.: 1998, 'Students' proof schemes: Results from Exploratory Studies', in E. Dubinsky, A. H. Schoenfeld and J. J. Kaput (eds.), Research on Collegiate Mathematics Education, Vol. III, American Mathematical Society, Providence, RI, USA, pp. 234–283.Google Scholar
  23. Hillel, J. and Alvarez, J. C.: 1996, 'University mathematics, report of topic group 3′, in C. Alsina, J. Alvarez, M. Niss, A. Perez, L. Rico and A. Sfard (eds.), Proceedings of the 8th International Congress on Mathematical Education, S.A.E.M. 'Thales', Sevilla, pp. 245–248.Google Scholar
  24. Kitcher, P.: 1984, The Nature of Mathematical Knowledge, Oxford University Press, New York, USA.Google Scholar
  25. Kleiner, I.: 1991, 'Rigor and proof in mathematics: a historical perspective', Mathematics Magazine 64(5), 291–314.Google Scholar
  26. Kline, M.: 1973, Why Johnny Can't Add, Random House, New York, USA.Google Scholar
  27. Lakatos, I.: 1978, 'Cauchy and the continuum', The Mathematical Intelligencer 1(3), 151–161.Google Scholar
  28. Lampert, M.: 1990, 'When the problem is not the question and the solution is not the answer: mathematical knowing and teaching', American Educational Research Journal 27(1), 29–63.Google Scholar
  29. Lay, D. C.: 1994, Linear Algebra and Its Applications, Addison-Wesley, Reading, MA, USA.Google Scholar
  30. Lebesgue, H.: 1963, En marge du calcul des variations', L'enseignement mathématique 9(4), 212–326.Google Scholar
  31. Maher, C. A. and Martino, A. M.: 1996, 'The development of the idea of mathematical proof: a 5-year case study', Journal for Research in Mathematics Education 27(2), 194–214.Google Scholar
  32. Margolinas, C.: 1992, 'Eléments pour l'analyse du rôle du maître: les phases de conclusion', Recherches en Didactique des Mathématiques 12(1), 113–158.Google Scholar
  33. Martin, G. and Harel, G.: 1989, 'Proof frames of preservice elementary teachers', Journal for Research in Mathematics Education 20(1), 41–51.Google Scholar
  34. Mason, J. and Spence, M.: 1999, 'Beyond mere knowledge of mathematics: The importance of Knowing-to Act in the moment', Education Studies in Mathematics 38, 135–161.CrossRefGoogle Scholar
  35. Moore, R. C.: 1994, 'Making the transition to formal proof', Educational Studies in Mathematics 27(3), 249–266.CrossRefGoogle Scholar
  36. Movshowitz-Hadar, N.: 1988, 'Stimulating presentation of theorems followed by responsive proofs', For the Learning of Mathematics 8(2), 12–19.Google Scholar
  37. Richman, F.: 1993, 'A Circular Argument', The College Mathematics Journal 24(2), 160–162.Google Scholar
  38. Sierpinska, A.: 1994, Understanding in Mathematics, Falmer Press, London, UK.Google Scholar
  39. Silver, E. A.: 1994, 'Mathematical thinking and reasoning for all students: moving from rhetoric to reality', in D. Robitaille, D. Wheeler and C. Kieran (eds.), Selected Lectures from the 7th International Congress on Mathematical Education, Les presses de l'université Laval, Sainte-Foy, Québec, Canada, pp. 311–326.Google Scholar
  40. Velleman, D. J.: 1997, 'Fermat's last theorem and Hilbert's program', The Mathematical Intelligencer 19(1), 64–67.Google Scholar
  41. Vinner, S.: 1997, 'The pseudo-conceptual and the pseudo-analytical thought processes in mathematics learning', Educational Studies in Mathematics 34(2), 97–129.CrossRefGoogle Scholar
  42. Yackel, E. and Cobb, P.: 1996, 'Sociomathematical norms, argumentation, and autonomy in mathematics', Journal for Research in Mathematics Education 27(4), 458–477.Google Scholar
  43. Young, L. C.: 1969, Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, USA.Google Scholar
  44. Zack, V.: 1997, '“You have to prove us wrong”: Proof at the elementary school level', in E. Pehkonen (ed.), Proceedings of the Twenty-First International Conference on the Psychology of Mathematics Education, University of Helsinki, Finland, Vol. 4, pp. 291–298.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Tommy Dreyfus
    • 1
  1. 1.Center for Technological Education, Holon(affiliated with Tel Aviv University)HolonIsrael

Personalised recommendations