Skip to main content
Log in

Cytological location and further characterization of the Third chromosome resistance gene in Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Mutations in the Third chromosome resistance (Tcr; 3-39.6) gene confer dominant resistance to α-methyl dopa and suggest the gene is involved in catecholamine metabolism. Evidence for involvement in catecholamine metabolism comes from the three phenotypes associated with the mutant Tcr chromosomes dominant resistance, dominant rescue of partially complementing l(2)amd alleles, and recessive lethal phenotypes. Only dominant resistance to αs-methyl dopa, however, was mapped to the Tcr locus. Both recessive lethality and dominant rescue of l(2)amd alleles have now been mapped to the Tcr gene and, through the isolation of a new deletion in the region, we demonstrate these phenotypes are due to a loss of Tcr function. This deletion places the Tcr gene in the 69B4-5 to 69C8-11 region. Additionally, we have tested and verified three predictions of the biochemical model proposed by Bishop, Sherald, and Wright (1989) for the function of the Tcr protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akam, M.E., D.B. Roberts, G.P. Richards & M. Ashburner, 1978. The genetics of two major larval proteins. Cell 13: 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, C.P., A.F. Sherald & T.R.F. Wright, 1989. Characterization of the third chromosome dominant α-methyl dopa resistant mutants (Tcr) and their interactions with l(2)amd α-methyl dopa hypersensitive alleles in Drosophila melanogaster. Genet. Res. Camb. 54: 93–99.

    CAS  Google Scholar 

  • Bishop, C.P. & T.R.F. Wright, 1987. Ddc DE1, a mutation differentially affecting both the stage and tissue specific expression of dopa decarboxylase in Drosophila. Genetics 115: 477–491.

    PubMed  CAS  Google Scholar 

  • Black, B.C., E.S. Pentz & T.R.F. Wright, 1987. The alpha methyl dopa hypersensitive gene, l(2)amd, and two adjacent genes in Drosophila melanogaster: Physical localization and direct effects of amd on catecholamine metabolism. Mol. Gen. Genet. 209: 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Eveleth, D.D. & J.L. Marsh, 1986. Evidence for evolutionary duplication of genes in the dopa decarboxylase region of Drosophila. Genetics 114: 469–483.

    PubMed  CAS  Google Scholar 

  • Giorgi, G., M.C. Pezzoli, S. Cavicchi & D. Guerra, 1995. Approximated: A gene involved in the control of cell proliferation. Europ. Dros. Res. Conf. 14: 303a.

    Google Scholar 

  • Hopkins, T.L. & K.J. Kramer, 1992. Insect cuticle sclerotization. Annu. Rev. Entomol. 37: 273–302.

    Article  CAS  Google Scholar 

  • Lindsley, D.L. & E.H. Grell, 1968. Genetic Variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ. p. 627.

  • Lindsley, D.L. & G.G. Zimm, 1992. The Genome of Drosophila melanogaster. Academic Press, San Diego, CA.

    Google Scholar 

  • Marsh, J.L., M.P. Erfle & C.A. Leeds, 1986. Molecular localization, developmental expression, and nucleotide sequence of the alphamethyl dopa hypersensitive gene of Drosophila. Genetics 114: 453–467.

    PubMed  CAS  Google Scholar 

  • Marsh, J.L. & T.R.F. Wright, 1986. Evidence for regulatory variants of the dopa decarboxylase loci in Drosophila. Genetics 112: 249–265.

    PubMed  CAS  Google Scholar 

  • Olney, J.W., C.F. Zorumski, G.R. Stewart, M.T. Price, G. Wang & J. Labruyere, 1990. Excitotoxicity of L-DOPA and 6-OHDOPA: Implications for Parkinson's and Huntington's diseases. Exp. Neuro. 108: 269–272.

    Article  CAS  Google Scholar 

  • Sparrow, J.C. & T.R.F. Wright, 1974. The selection for mutants in Drosophila melanogaster hypersensitive to α-methyl dopa, a dopa decarboxylase inhibitor. Mol. Gen. Genet. 130: 127–141.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y.H., C.J. Tsai, M.M. Green, J.L. Chao, C.T. Yu, T.J. Jaw, J.Y. Yeh & Y.N. Bolshakov, 1995. White as a reporter gene to detect transcriptional silencers specifying position-specific gene expression during Drosophila melanogaster development. Genetics 141: 1075–1086.

    PubMed  CAS  Google Scholar 

  • Turnbull, I.F., N.A. Pyliotis & A.J. Howells, 1980. The effects of dopa decarboxylase inhibitors on the permeability and ultrastructure of the larval cuticle of the Australian sheep blowfly, Lucilia cuprina. J. Insect Physiol. 26: 525–532.

    Article  CAS  Google Scholar 

  • Wright, T.R.F., 1987. The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv. Gen. 24: 127–223.

    Article  CAS  Google Scholar 

  • Wright, T.R.F., B.C. Black, C.P. Bishop, J.L. Marsh, E.S. Pentz, R. Steward & E.Y. Wright, 1982. The genetics of dopa decarboxylase in Drosophila melanogaster. Mol. Gen. Genet. 188: 18–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, C.P., Talomie, T.G. & Lewis, W.D. Cytological location and further characterization of the Third chromosome resistance gene in Drosophila melanogaster. Genetica 105, 117–124 (1999). https://doi.org/10.1023/A:1003650711793

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003650711793

Navigation